Our laboratory is investigating the in vitro and in vivo metabolic processing of endogenously formed DNA adducts as a means of evaluating candidate urinary biomarkers. In particular, we have focused our studies on the metabolism and disposition of the peroxidation-derived pyrimidopurinone deoxyguanosine (dG) adduct, 3-(2-deoxy-beta-D-erythro-pentofuranosyl)pyrimido[1,2-R]purin-10(3H)-one (M1dG), and its principal metabolite, 6-oxo-M1dG. We now report the metabolic processing of M1dG at concentrations 4-8 orders of magnitude lower in concentration than previously analyzed, by the use of accelerator mass spectrometry analysis. Administration of 2.0 nCi/kg [14C]M1dG resulted in 49% of the 14C recovered in urine, whereas 51% was recovered in feces. In urine samples, approximately 40% of the 14C corresponded to the metabolite, 6-oxo-M1dG. Following iv administration of 0.5 and 54 pCi/kg [14C]M1dG, approximately 25% of the urinary recovery corresponded to the metabolite, 6-oxo-M1dG. Thus, upon administration of trace amounts of M1dG, a significant percentage of 6-oxo-M1dG was produced, suggesting that 6-oxo-M1dG maybe a useful urinary marker of exposure to endogenous oxidative damage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3214661 | PMC |
http://dx.doi.org/10.1021/tx800049v | DOI Listing |
Chem Res Toxicol
June 2008
A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA.
Our laboratory is investigating the in vitro and in vivo metabolic processing of endogenously formed DNA adducts as a means of evaluating candidate urinary biomarkers. In particular, we have focused our studies on the metabolism and disposition of the peroxidation-derived pyrimidopurinone deoxyguanosine (dG) adduct, 3-(2-deoxy-beta-D-erythro-pentofuranosyl)pyrimido[1,2-R]purin-10(3H)-one (M1dG), and its principal metabolite, 6-oxo-M1dG. We now report the metabolic processing of M1dG at concentrations 4-8 orders of magnitude lower in concentration than previously analyzed, by the use of accelerator mass spectrometry analysis.
View Article and Find Full Text PDFJ Biol Chem
December 2007
A. B. Hancock, Jr. Memorial Laboratory for Cancer Research, Department of Biochemistry, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA.
Endogenously occurring damage to DNA is a contributing factor to the onset of several genetic diseases, including cancer. Monitoring urinary levels of DNA adducts is one approach to assess genomic exposure to endogenous damage. However, metabolism and alternative routes of elimination have not been considered as factors that may limit the detection of DNA adducts in urine.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2006
Memorial Laboratory for Cancer Research, Department of Biochemistry, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA.
3-(2-Deoxy-beta-D-erythro-pentofuranosyl)pyrimido[1,2-alpha]purin-10(3H)-one (M1dG) is a DNA adduct arising from the reaction of 2-deoxyguanosine with the lipid peroxidation product, malondialdehyde, or the DNA peroxidation product, base propenal. M1dG is mutagenic in bacteria and mammalian cells and is present in the genomic DNA of healthy human beings. It is also detectable, albeit at low levels, in the urine of healthy individuals, which may make it a useful biomarker of DNA damage linked to oxidative stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!