Lectins are carbohydrate binding proteins found in plants, animals, and microorganisms. They serve as important models for understanding protein-carbohydrate interactions at the molecular level. We report here the fabrication of a novel sensing interface of biotinylated sialosides to probe lectin-carbohydrate interactions using surface plasmon resonance spectroscopy (SPR). The attachment of carbohydrates to the surface using biotin-NeutrAvidin interactions and the implementation of an inert hydrophilic hexaethylene glycol spacer (HEG) between the biotin and the carbohydrate result in a well-defined interface, enabling desired orientational flexibility and enhanced access of binding partners. The specificity and sensitivity of lectin binding were characterized using Sambucus nigra agglutinin (SNA) and other lectins including Maackia amurensis lectin (MAL), concanavalin A (Con A), and wheat germ agglutinin (WGA). The results indicate that alpha2,6-linked sialosides exhibit high binding affinity to SNA, while alteration in sialyl linkage and terminal sialic acid structure compromises the affinity by a varied degree. Quantitative analysis yields an equilibrium dissociation constant (KD) of 777 +/- 93 nM for SNA binding to Neu5Ac alpha2,6-LHEB. Transient SPR kinetics confirms the K D value from the equilibrium binding studies. A linear relationship was obtained in the 10-100 microg/mL range with limit of detection of approximately 50 nM. Weak interactions with MAL, Con A, and WGA were also quantified. The control experiment with bovine serum albumin indicates that nonspecific interaction on this surface is insignificant over the concentration range studied. Multiple experiments can be performed on the same substrate using a glycine stripping buffer, which selectively regenerates the surface without damaging the sialoside or the biotin-NeutrAvidin interface. This surface design retains a high degree of native affinity for the carbohydrate motifs, allowing distinction of sialyl linkages and investigation pertaining to the effect of functional group on binding efficiency. It could be easily modified to identify and quantify binding patterns of any low-affinity biologically relevant systems, opening new avenues for probing carbohydrate-protein interactions in real time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2586005PMC
http://dx.doi.org/10.1021/ac702566eDOI Listing

Publication Analysis

Top Keywords

surface plasmon
8
plasmon resonance
8
protein-carbohydrate interactions
8
biotinylated sialosides
8
binding
8
surface
6
interactions
6
resonance study
4
study protein-carbohydrate
4
interactions biotinylated
4

Similar Publications

A multiscale approach is employed to investigate the interaction dynamics between interleukin-6, a key cancer biomarker, and alkyl-functionalized surfaces, with the ultimate goal of guiding biosensor design. The study integrates classical molecular dynamics, Brownian dynamics simulations, and binding experiments to explore the adsorption dynamics and energetics of IL-6 on surfaces modified with self-assembled monolayers (SAMs). The comparative analysis reveals a dramatic effect on the interaction strength of IL-6 with a SAMs comprising a mix of charged and hydrophobic ligands.

View Article and Find Full Text PDF

mRNA display is an effective tool to identify high-affinity macrocyclic binders for challenging protein targets. The success of an mRNA display selection is dependent on generating highly diverse libraries with trillions of peptides. While translation elongation can canonically accommodate the 61 proteinogenic triplet codons, translation initiation is restricted to the native start codon AUG.

View Article and Find Full Text PDF

An innovative approach to ticks and insect pests management is necessary to mitigate the challenges posed by the indiscriminate use of chemical pesticides, which can lead to resistance development and environmental pollution. Despite their great potential, biological control agents have significant manufacturing, application, and stability limitations. Currently, using phytochemicals, biosynthesized nanoparticles, and bioagents to get rid of arthropods might be a good alternative that would make farmers less worried about residues and resistance.

View Article and Find Full Text PDF

PdRu bimetallic nanoalloys with improved photothermal effect for amplified ROS-mediated tumor therapy.

Front Bioeng Biotechnol

January 2025

Department of Experimental Research and Guangxi Cancer Molecular Medicine Engineering Research Center and Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, China.

An emerging strategy in cancer therapy involves inducing reactive oxygen species (ROS), specifically within tumors using nanozymes. However, existing nanozymes suffer from limitations such as low reactivity, poor biocompatibility, and limited targeting capabilities, hindering their therapeutic efficacy. In response, the PdRu@PEI bimetallic nanoalloys were constructed with well-catalytic activities and effective separation of charges, which can catalyze hydrogen peroxide (HO) to toxic hydroxyl radical (·OH) under near-infrared laser stimulation.

View Article and Find Full Text PDF

Melioidosis is a life-threatening infectious disease caused by the bacterium . Although culture is the gold standard for diagnosing melioidosis, it is time-consuming and delays timely treatment. Non-culture-based diagnostic techniques are interesting alternatives for the rapid detection of melioidosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!