Watershed management strategies to prevent and control cyanobacterial harmful algal blooms.

Adv Exp Med Biol

The University of North Carolina at Chapel Hill, Institute of Marine Sciences, 3431 Arendell Street, Morehead City, NC 28557, USA.

Published: June 2008

The tenets of watershed management--a focus on the land area linked to the water body, the incorporation of sound scientific information into the decision-making process and stakeholder involvement throughout the process--are well-suited for the management of cyanobacterial harmful algal blooms (C-HABs). The management of C-HABs can be viewed as having two main areas of focus. First, there is mitigation--control and/or removal of the bloom. This type of crisis response is an important component to managing active C-HABs and there are several techniques that have been successfully utilized, including the application of algicides, physical removal of surface scums and the mechanical mixing of the water column. While these methods are valuable because they address the immediate problem, they do not address the conditions that exist in the system that promote and maintain C-HABs. Thus, the second component of a successful C-HAB management strategy would include a focus on prevention. C-HABs require nutrients to fuel their growth and are often favored in longer-residence time systems with vertical stratification of the water column. Consequently, nutrients and hydrology are the two factors most commonly identified as the targets for prevention of C-HABs. Management strategies to control the sources, transformation and delivery of the primary growth-limiting nutrients have been applied with success in many areas. The most effective of these include controlling land use, maintaining the integrity of the landscape and applying best management practices. In the past, notable successes in managing C-HABs have relied on the reduction of nutrients from point-sources. Because many point sources are now well-managed, current efforts are focused on non-point source nutrient reduction, such as runoff from agricultural and urban areas. Non-point sources present significant challenges due to their diffuse nature. Regardless of which techniques are utilized, effective watershed management programs for decreasing the prevalence of C-HABs will require continuing efforts to integrate science and management activities. Ultimately, it is increased coordination among stakeholders and scientists that will lead to the development of the decision-making tools that managers require to effectively weigh the costs and benefits of these programs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-0-387-75865-7_12DOI Listing

Publication Analysis

Top Keywords

watershed management
8
management strategies
8
cyanobacterial harmful
8
harmful algal
8
algal blooms
8
c-habs
8
c-habs management
8
techniques utilized
8
water column
8
prevention c-habs
8

Similar Publications

The hydrologic benefits of catchment-scale implementation of stormwater control measures (SCMs) in mitigating the adverse effects of urbanization are well established. Nevertheless, recent studies indicate that the Unified Stormwater Sizing Criteria (USSC) regulations, mandating the combined use of distributed and storage stormwater controls, do not protect channel stability, despite their effectiveness in reducing runoff from impervious surfaces. The USSC are the basis of SCM design in 11 U.

View Article and Find Full Text PDF

Microbial coalescence plays a crucial role in shaping aquatic ecosystems by facilitating the merging of neighboring microbial communities, thereby influencing ecosystem structure. Although this phenomenon is commonly observed in natural environments, comprehensive quantitative comparative studies on different lifestyle bacteria involved in this process are still lacking. The study focuses on 16S rRNA Amplicon Sequence Variants (ASVs) at the Jinsha River hydropower stations (Wudongde [WDD], Baihetan [BHT], Xiluodu [XLD], Xiangjiaba [XJB]), specifically examining free-living (FL) and particle-attached (PA) bacteria.

View Article and Find Full Text PDF

Impacts of climate change on storm event-based flow regime and channel stability of urban headwater streams.

J Environ Manage

January 2025

Tetra Tech, Inc., P.O. Box 14409, Research Triangle Park, NC, 27709, United States. Electronic address:

Due to the recent improved availability of global and regional climate change (CC) models and associated data, the projected impact of CC on urban stormwater management is well documented. However, most studies are based on simplified design storm analysis and unit-area runoff models; evaluations of the long-term, continuous hydrologic response of extensive stormwater control measures (SCM) implementation under future CC scenarios are limited. Moreover, channel stability in response to CC is seldom evaluated due to the input data required to develop a long-term, continuous sediment transport model.

View Article and Find Full Text PDF

Enhanced priming effect in agricultural soils driven by high-quality exogenous organic carbon additions: A meta-analysis.

Sci Total Environ

January 2025

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China. Electronic address:

The addition of exogenous organic carbon (C) to soil can either accelerate or retard the soil organic carbon (SOC) mineralization, i.e., the priming effect (PE), which plays a crucial role in SOC sequestration and thus is significant in the context of global warming.

View Article and Find Full Text PDF

Record-setting cyanobacterial bloom in the largest freshwater lake in northern China caused by joint effects of hydrological variations and nutrient enrichment.

Environ Res

January 2025

Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.

Cyanobacterial blooms represent a significant environmental issue posing widespread threats to global aquatic ecological health. Climate and nutrient enrichment were the most studied factors modulating cyanobacterial blooms in eutrophic lakes. However, in many floodplain lakes, the importance of hydrological variation in driving and predicting cyanobacterial blooms is often overlooked and largely underestimated, which has hampered the effectiveness of lake management.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!