Evidence indicates that the incidence of cyanobacterial harmful algal blooms (CHABs) is increasing in spatial extent and temporal frequency worldwide. Cyanobacterial blooms produce highly potent toxins and huge, noxious biomasses in surface Waters used for recreation, commerce, and as drinking water sources. The Interagency, International Symposium on Cyanobacterial Harmful Algal Blooms (ISOC-HAB) characterized the state of the science and identified research needed to address the risks posed by CHABs to human health and ecosystem sustainability. This chapter provides a synopsis of CHAB research needs that were identified by workgroups that addressed charges in major topic areas. The research and infrastructure needed are listed under nine categories: 1) Analytical Methods; 2) CHAB Occurrence; 3) CHAB Causes; 4) Human Health; 5) Ecosystem Sustainability; 6) CHAB Prevention; 7) CHAB Control and Mitigation; 8) Risk Assessment and; 9) Infrastructure. A number of important issues must be addressed to successfully confront the health, ecologic, and economic challenges presented by CHABs. Near-term research goals include the development of field-ready tests to identify and quantify cells and toxins, the production of certified reference standards and bulk toxins, formal assessments of CHAB incidence, improved understanding of toxin effects, therapeutic interventions, ecologically benign means to prevent and control CHABs, supplemental drinking water treatment techniques, and the development of risk assessment and management strategies. Long-term goals include the assimilation of CHAB databases into emerging U.S. and international observing systems, the development of quantitative models to predict CHAB occurrence, effects, and management outcomes, and economic analyses of CAHB costs and management benefits. Accomplishing further infrastructure development and freshwater HAB research is discussed in relationship to the Harmful Algal Blooms and Hypoxia Research and Control Act and existing HAB research programs. A sound scientific basis, the integration of CHAB infrastructure with that of the marine HAB community, and a systems approach to risk assessment and management will minimize the impact of this growing challenge to society.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-0-387-75865-7_2 | DOI Listing |
J Plankton Res
July 2024
Écologie Pélagique (DYNECO/PELAGOS), Institut Français de Recherche pour l'Exploitation de la Mer, IFREMER, 29280 Plouzané, France.
Phagotrophy is a key nutritional mode for many bloom-forming dinoflagellates that can supplement their carbon and nutrient requirements. However, the environmental drivers and ecological relevance of phagotrophy in algal blooms are still poorly understood. This study evaluates the effect of light and nutrient availability on the phagotrophic activity of three common bloom-forming dinoflagellates (, and ) using three fluorescently labeled preys: bacteria, and the haptophyte .
View Article and Find Full Text PDFMar Environ Res
January 2025
College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
Diarrhetic shellfish toxins (DSTs) are widespread in marine environments, posing potential threats to marine ecosystems, shellfish aquaculture, and human health. Despite their prevalence, knowledge of the stability of dissolved DSTs in seawater is still limited. This study aimed to investigate the effects of bacteria, temperature, and irradiation on the stability of dissolved okadaic acid (OA) and dinophysistoxin-1 (DTX1) in seawater.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.
Aerosols containing biological material (i.e., bioaerosols) impact public health by transporting toxins, allergens, and diseases and impact the climate by nucleating ice crystals and cloud droplets.
View Article and Find Full Text PDFWater Res
January 2025
Laboratory of Algology and Microbial Ecology, Nature Research Centre, Akademijos Str. 2, LT-08412, Vilnius, Lithuania. Electronic address:
Cyanobacterial blooms, driven by nutrient loading and temperature, pose significant ecological and economic challenges. This study employs a combined data-driven and trait-based modelling approach to predict changes in cyanobacterial communities in a mono- and a polydominant shallow temperate lakes under varying temperature and nutrient scenarios. Results of the AQUATOX simulation model for two aquatic systems suggest that a 2 °C temperature increase, consistent with Intergovernmental Panel on Climate Change's predictions, may influence cyanobacteria species composition and dominance, with trends indicating a possible shift favouring Nostocales over Oscillatoriales and Chroococcales.
View Article and Find Full Text PDFToxins (Basel)
January 2025
Scottish Association for Marine Science-UHI, Oban PA37 1QA, UK.
This study explored harmful algal bloom (HAB) risk as a function of exposure, hazard and vulnerability, using Scotland as a case study. Exposure was defined as the fish biomass estimated to be lost from a bloom event, based on the total recorded annual production. Hazard was estimated from literature-reported bloom events.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!