Radioactively labeled RNA probes in conjunction with in situ hybridization histochemistry have become a useful method for studying gene expression in the central nervous system. We used digoxigenin-labeled uridine triphosphate to synthesize cRNA probes for localization of nerve growth factor receptor (NGFR) mRNA in the rat basal forebrain. Detection of cells containing digoxigenin-labeled NGFR mRNA was accomplished using a digoxigenin antibody conjugated with alkaline phosphatase. NGFR mRNA-positive cells were distributed in three major cell groups in the basal forebrain: the medial septal nucleus, vertical and horizontal limbs of the diagonal band of Broca, and nucleus basalis. This technique provides a rapid and sensitive method for high-resolution detection of mRNA species in the central nervous system, as well as the potential for co-localization of two different mRNA species within individual cells.

Download full-text PDF

Source
http://dx.doi.org/10.1177/39.2.1846159DOI Listing

Publication Analysis

Top Keywords

ngfr mrna
12
nerve growth
8
growth factor
8
factor receptor
8
receptor ngfr
8
mrna rat
8
situ hybridization
8
hybridization histochemistry
8
central nervous
8
nervous system
8

Similar Publications

Edaravone Improves Motor Dysfunction Following Brachial Plexus Avulsion Injury in Rats.

ACS Chem Neurosci

January 2025

Department of Neurology, Multi-Omics Research Center for Brain Disorders,The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.

Brachial plexus root avulsion (BPRA) is often caused by road collisions, leading to total loss of motor function in the upper limb. At present, effective treatment options remain limited. Edaravone (EDA), a substance that eliminates free radicals, exhibits numerous biological properties, including neuroprotective, antioxidant and anti-inflammatory effects.

View Article and Find Full Text PDF

Introduction: Astrocytes, specialized glial cells, are essential for maintaining the central nervous system homeostasis. Inflammatory conditions can disrupt neurotrophic factors and receptor expression in astrocytes, leading to potential central nervous system damage. Itaconate, recently identified for its anti-inflammatory properties, was investigated in this study for its effects on neurotrophic factors in LPS-stimulated primary rat astrocytes.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is characterized by complex secondary injury processes involving the p75 neurotrophin receptor (p75NTR), which has been proposed as a possible therapeutic target. However, the pathogenic role of the p75NTR co-receptor sortilin in TBI has not been investigated. In this study, we examined whether sortilin contributes to acute and early processes of secondary injury using a murine controlled cortical impact (CCI) model of TBI.

View Article and Find Full Text PDF

Facial nerve is an integral part of peripheral nerve. Schwann cells are important microglia involved in the repair and regulation of facial nerve injury. LncRNA growth arrest‑specific transcript 5 (GAS5) is involved in the behavioral regulation of Schwann cell and the regeneration of peripheral nervous system.

View Article and Find Full Text PDF

Analysis of the mechanisms underlying autism spectrum disorder (ASD) is an urgent task due to the ever-increasing prevalence of this condition. The study of critical periods of neuroontogenesis is of interest, since the manifestation of ASD is often associated with prenatal disorders of the brain development. One of the currently promising hypotheses postulates a connection between the pathogenesis of ASD and the dysfunction of neurotransmitters and neurotrophins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!