Prostaglandin F2alpha induces the normoxic activation of the hypoxia-inducible factor-1 transcription factor in differentiating 3T3-L1 preadipocytes: Potential role in the regulation of adipogenesis.

J Cell Biochem

Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave. Chicago, Illinois 60611, USA.

Published: September 2008

Prostaglandin F2alpha (PGF2alpha) is a potent paracrine inhibitor of adipocyte differentiation. Here we show that treatment of differentiating 3T3-L1 preadipocytes with PGF2alpha induces the expression of DEC1, a transcriptional repressor that has previously been implicated in the inhibition of adipogenesis in response to hypoxia as a downstream effector of the hypoxia-inducible factor-1 (HIF-1) transcription factor. Surprisingly, despite performing our experiments under normal ambient oxygen conditions, we find that treatment of differentiating 3T3-L1 preadipocytes with PGF2alpha also results in the marked activation of HIF-1, as measured by an increase in the accumulation of the HIF-1alpha regulatory subunit. However, unlike the effects of hypoxia, this PGF2alpha-induced normoxic increase in HIF-1alpha is not mediated by an increase in the stability of the HIF-1alpha polypeptide, rather we find that PGF2alpha selectively increases the expression of the alternatively spliced HIF-1alpha I.1 mRNA isoform. Significantly, we demonstrate that the shRNA-mediated knockdown of endogenous HIF-1alpha expression attenuates the PGF2alpha-induced expression of DEC1, overcomes the inhibitory effects of PGF2alpha on the expression of proadipogenic transcription factors C/EBPalpha and PPARgamma and partially rescues the PGF2alpha-induced inhibition of adipogenesis. Taken together, these results indicate that PGF2alpha promotes the activation of the HIF-1 transcription factor pathway under normal oxygen conditions, and highlight a potential role for the normoxic activation of the HIF-1/DEC1-pathway in mediating the inhibitory effects of PGF2alpha on adipocyte differentiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2634301PMC
http://dx.doi.org/10.1002/jcb.21801DOI Listing

Publication Analysis

Top Keywords

transcription factor
12
differentiating 3t3-l1
12
3t3-l1 preadipocytes
12
prostaglandin f2alpha
8
normoxic activation
8
hypoxia-inducible factor-1
8
potential role
8
adipocyte differentiation
8
treatment differentiating
8
preadipocytes pgf2alpha
8

Similar Publications

ECM Modifications Driven by Age and Metabolic Stress Directly Promote the Vascular Smooth Muscle Cell Osteogenic Processes.

Arterioscler Thromb Vasc Biol

January 2025

British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, United Kingdom. (M.W., M.F., R.O., L.S., M.M., C.M.S.).

Background: The ECM (extracellular matrix) provides the microenvironmental niche sensed by resident vascular smooth muscle cells (VSMCs). Aging and disease are associated with dramatic changes in ECM composition and properties; however, their impact on the VSMC phenotype remains poorly studied.

Methods: Here, we describe a novel in vitro model system that utilizes endogenous ECM to study how modifications associated with age and metabolic disease impact the VSMC phenotype.

View Article and Find Full Text PDF

The BEN domain protein LIN-14 coordinates neuromuscular positioning during epidermal maturation.

iScience

January 2025

Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.

Development and function of an organism depend on coordinated inter-tissue interaction. How such interactions are maintained during tissue renewal and reorganization remains poorly understood. Here, we find that BEN domain transcription factor LIN-14 is required in epidermis for maintaining the position of motor neurons and muscles during developmental tissue reorganization.

View Article and Find Full Text PDF

Introduction: Oxidative stress is an important cause of acetaminophen (APAP)-induced liver injury (AILI). Sakuranetin (Sak) is an antitoxin from the cherry flavonoid plant with good antioxidant effects. However, whether sakuranetine has a protective effect on APAP-induced liver injury is not clear.

View Article and Find Full Text PDF

Bone metastasis and skeletal-related complications are primary causes of mortality in advanced-stage prostate cancer (PCa). Epigenetic regulation, particularly histone modification, plays a key role in this process; however, the underlying mechanisms remain elusive. In mouse models, JARID1D was an important mediator of both visceral and bone metastases.

View Article and Find Full Text PDF

A novel ROR1-targeting antibody-PROTAC conjugate promotes BRD4 degradation for solid tumor treatment.

Theranostics

January 2025

Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.

Proteolysis Targeting Chimeras (PROTACs) are bifunctional compounds that have been extensively studied for their role in targeted protein degradation (TPD). The capacity to degrade validated or undruggable targets provides PROTACs with significant potency in cancer therapy. However, the clinical application of PROTACs is limited by their poor potency and unfavorable pharmacokinetic properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!