B-type natriuretic peptide and wall stress in dilated human heart.

Mol Cell Biochem

Internal Medicine, Cardiology, Philipps University, Baldingerstrasse, Marburg, Germany.

Published: July 2008

Background Although B-type natriuretic peptide (BNP) is used as complimentary diagnostic tool in patients with unknown thoracic disorders, many other factors appear to trigger its release. In particular, it remains unresolved to what extent cellular stretch or wall stress of the whole heart contributes to enhanced serum BNP concentration. Wall stress cannot be determined directly, but has to be calculated from wall volume, cavity volume and intraventricular pressure of the heart. The hypothesis was, therefore, addressed that wall stress as determined by cardiac magnetic resonance imaging (CMR) is the major determinant of serum BNP in patients with a varying degree of left ventricular dilatation or dysfunction (LVD). Methods A thick-walled sphere model based on volumetric analysis of the LV using CMR was compared with an echocardiography-based approach to calculate LV wall stress in 39 patients with LVD and 21 controls. Serum BNP was used as in vivo marker of a putatively raised wall stress. Nomograms of isostress lines were established to assess the extent of load reduction that is necessary to restore normal wall stress and related biochemical events. Results Both enddiastolic and endsystolic LV wall stress were correlated with the enddiastolic LV volume (r = 0.54, P < 0.001; r = 0.81, P < 0.001). LV enddiastolic wall stress was related to pulmonary pressure (capillary: r = 0.69, P < 0.001; artery: r = 0.67, P < 0.001). Although LV growth was correlated with the enddiastolic and endsystolic volume (r = 0.73, P < 0.001; r = 0.70, P < 0.001), patients with LVD exhibited increased LV wall stress indicating an inadequately enhanced LV growth. Both enddiastolic (P < 0.05) and endsystolic (P < 0.01) wall stress were increased in patients with increased BNP. In turn, BNP concentration was elevated in individuals with increased enddiastolic wall stress (>8 kPa: 587 +/- 648 pg/ml, P < 0.05; >12 kPa: 715 +/- 661 pg/ml, P < 0.001; normal < or =4 kPa: 124 +/- 203 pg/ml). Analysis of variance revealed LV enddiastolic wall stress as the only independent hemodynamic parameter influencing BNP (P < 0.01). Using nomograms with "isostress" curves, the extent of load reduction required for restoring normal LV wall stress was assessed. Compared with the CMR-based volumetric analysis for wall stress calculation, the echocardiography based approach underestimated LV wall stress particularly of dilated hearts. Conclusions In patients with LVD, serum BNP was increased over the whole range of stress values which were the only hemodynamic predictors. Cellular stretch appears to be a major trigger for BNP release. Biochemical mechanisms need to be explored which appear to operate over this wide range of wall stress values. It is concluded that the diagnostic use of BNP should primarily be directed to assess ventricular wall stress rather than the extent of functional ventricular impairment in LVD.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11010-008-9779-4DOI Listing

Publication Analysis

Top Keywords

wall stress
72
wall
19
stress
19
serum bnp
16
patients lvd
12
enddiastolic wall
12
bnp
10
b-type natriuretic
8
natriuretic peptide
8
stress dilated
8

Similar Publications

Heart failure (HF) is a conundrum in that, current therapies only slow the progression of the disease. We posit, if the causal mechanism were targeted, progression of the disease could be stopped and potentially reversed. We hypothesize that insufficient myocardial blood flow (MBF) produces minute areas of ischemia, that lead to an accumulating injury culminating in HF.

View Article and Find Full Text PDF

Transcriptomic analysis reveals potential roles of polyamine and proline metabolism in waterlogged peach roots inoculated with Funneliformis mosseae and Serendipita indica.

Tree Physiol

January 2025

Hubei Key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei 434025, China.

Root-associated endophytic fungi can create symbiotic relationships with trees to enhance stress tolerance, but the underlying mechanisms, especially with regard to waterlogging tolerance, remain unclear. This study aimed to elucidate the effects of Funneliformis mosseae and Serendipita indica on the growth, root cross-section structure, and root transcriptional responses of peach under waterlogging stress, with a focus on polyamine and proline metabolism. Genes and transcription factors associated with secondary cell wall biosynthesis were selected, and their expression profiles were analyzed.

View Article and Find Full Text PDF

Aims: Image-based, patient-specific rupture risk analysis of AAAs is promising but it is limited by invasive and costly imaging modalities. Ultrasound (US) offers a safe, more affordable alternative, allowing multiple assessments during follow-up and enabling longitudinal studies on AAA rupture risk.

Methods And Results: This study used time-resolved three-dimensional US to assess AAA rupture risk parameters over time, based on vessel and intraluminal thrombus (ILT) geometry.

View Article and Find Full Text PDF

Infectious bronchitis virus (IBV) is known to cause significant alterations in tracheal microbial flora in broiler chickens 5 days post-infection (dpi) and our focus is to understand the changes in both respiratory and gastrointestinal microbiome in broilers over a period of time following IBV infection. A study was conducted to characterize the tracheal and cecal microbiome in IBV infected and control broiler chickens at 6, 9 and 15 dpi. IBV genome in trachea, lung and cecal tonsils could be observed in the infected group at all the time points.

View Article and Find Full Text PDF

Pectins play a central role in enhancing Al tolerance of alfalfa via looseing fibre-microfiber arrangement of cell wall in root tips.

Int J Biol Macromol

January 2025

School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai 201101, China. Electronic address:

Cell wall greatly affects Al tolerance of plants, but the precise mechanisms by which the cell wall modulating Al tolerance remains largely unknown. In the present study, Al tolerant alfalfa varieties (WL525 and WL903) accumulated less Al in root tips, cell wall and pectins, averagely decreased by 23.8 %, 41.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!