Background, Aim, And Scope: The paper presents the complex approach to the assessment of the state of the environment in Southern Serbia, surroundings of Bujanovac, the region which is of great concern as being exposed to contamination by depleted uranium (DU) ammunition during the North Atlantic Treaty Organization (NATO) attacks in 1999. It includes studies on concentrations of radionuclides and heavy metals in different environmental samples 5 years after the military actions.
Materials And Methods: In October 2004, samples of soil, grass, lichen, moss, honey, and water were collected at two sites, in the immediate vicinity of the targeted area and 5 km away from it. Radionuclide ((7)Be, (40)K, (137)Cs, (210)Pb, (226)Ra, (232)Th, (235)U, (238)U) activities in solid samples were determined by standard gamma spectrometry and total alpha and beta activity in water was determined by proportional alpha-beta counting. Concentrations of 35 elements were determined in the samples of soil, moss, grass, and lichen by instrumental neutron activation analysis (INAA).
Results: The results are discussed in the context of a possible contamination by DU that reached the environment during the attacks as well as in the context of an environmental pollution by radionuclides and heavy metals in Southern Serbia. The results are compared to the state of environment in the region and other parts of the country both prior to and following the attacks.
Discussion: This is the first comprehensive study of the contents of radionuclides and heavy metals in Southern Serbia and consequently highly important for the assessment of the state of environment in this part of the country concerning possible effects of DU ammunition on the environment, as well as anthropogenic source of pollution by radionuclides and heavy metals and other elements. Also, the highly sensitive method of INAA was used for the first time to analyze the environmental samples from this area.
Conclusions: The results of the study of radionuclides in the samples of soils, leaves, grass, moss, lichen, honey, and water in Southern Serbia (Bujanovac) gave no evidence of the DU contamination of the environment 5 years after the military actions in 1999. Activities of radionuclides in soils were within the range of the values obtained in the other parts of the country and within the global average. The ratio of uranium isotopes confirmed the natural origin of uranium. In general, concentrations of heavy metals in the samples of soils, plant leaves, mosses, and lichen are found to be less or in the lower range of values found in other parts of the country, in spite of the differences in plant and moss species or soil characteristics. Possible sources of heavy metal contamination were identified as a power coal plant in the vicinity of the sampling sites and wood and waste burning processes.
Recommendations And Perspectives: The collected data should provide a base for the health risk assessments on animals and humans in the near future. It should be emphasized that the sampling was carried out 5 years after the military action and that the number of samples was limited; therefore, the conclusions should be accepted only as observed tendencies and a detailed study should be recommended in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-008-0003-6 | DOI Listing |
Environ Geochem Health
December 2024
Departamento de Explotación y Prospección Minera, Escuela de Ingeniería de Minas, Energía y Materiales, Universidad de Oviedo, Independencia, 13, 33004, Oviedo, Spain.
The food chain of the Valdezogues River system is at considerable risk due to the presence of mercury in the environment and to intense bioaccumulation and biomagnification processes in some fish species, particularly in piscivorous. Moreover, the presence of mercury in fish is a reliable indicator of the presence of its most toxic form, methylmercury. Of interest is that selenium, when present together with mercury in food, represents a significant decrease in the risks related to the ingestion of methylmercury.
View Article and Find Full Text PDFGenes Genomics
December 2024
School of Chemical Engineering and Biomolecular Engineering, Pusan National University, Busan, 46241, Republic of Korea.
Background: The genomes of publicly available electroactive Pseudomonas aeruginosa strains are currently limited to in-silico analyses. This study analyzed the electroactive Pseudomonas aeruginosa PBH03 genome using comparative in-silico studies for biotechnological applications.
Objective: Comparative in-silico and experimental analyses were conducted to identify the novel traits of P.
Environ Geochem Health
December 2024
College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China.
Excessive heavy metals (HMs) exposure in surface soils may cause non-negligible health risks to human beings; however, the potential health risk assessment of HMs in Yellow River Delta wetland (YRDW) soils has rarely been evaluated. In this study, we sampled surface wetland soils from ten typical functional areas in YRDW, assessed the HMs pollution status, evaluated their potential health risks, stimulated their probabilistic distributions of health risks and analyzed their potential source apportionment using Positive matrix factorization and Monte Carlo simulation. Enrichment factor (EF) and geo-accumulation index (I) indicated significant anthropogenic impacts, particularly in oil-contaminated sites, while Sediment Quality Guidelines (SQGs) comparison results suggested potential ecological risks, especially for As and Ni, which were occasionally above threshold effect levels.
View Article and Find Full Text PDFACS Omega
December 2024
College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China.
Soil contamination by potentially toxic elements (PTEs) poses a significant threat to crop quality and human health, making it a global concern. However, the distribution patterns of PTEs across different land-use types are not well understood. To investigate the relationship between the reduction and retention effects of various ecosystem types on soil PTEs, we analyzed five categories of target elements in 299 soil samples from the southeastern Yunnan Province.
View Article and Find Full Text PDFInt J Nanomedicine
December 2024
Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People's Republic of China.
Introduction: Lung injury, a common complication of sepsis, arises from elevated reactive oxygen species (ROS), mitochondrial dysfunction, and cell death driven by inflammation. In this study, a novel class of ultrasmall nanoparticles (CuO USNPs) was developed to address sepsis-induced lung injury (SILI).
Methods: The synthesized nanoparticles were thoroughly characterized to assess their properties.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!