Background: The development of a safe and effective AD vaccine requires a delicate balance between providing an adequate anti-Abeta antibody response sufficient to provide therapeutic benefit, while eliminating an adverse T cell-mediated proinflammatory autoimmune response. To achieve this goal we have designed a prototype chemokine-based DNA epitope vaccine expressing a fusion protein that consists of 3 copies of the self-B cell epitope of Abeta(42) (Abeta(1-11)) , a non-self T helper cell epitope (PADRE), and macrophage-derived chemokine (MDC/CCL22) as a molecular adjuvant to promote a strong anti-inflammatory Th2 phenotype.

Methods And Findings: We generated pMDC-3Abeta(1-11)-PADRE construct and immunized 3xTg-AD mouse model starting at age of 3-4 months old. We demonstrated that prophylactic immunizations with the DNA epitope vaccine generated a robust Th2 immune response that induced high titers of anti-Abeta antibody, which in turn inhibited accumulation of Abeta pathology in the brains of older mice. Importantly, vaccination reduced glial activation and prevented the development of behavioral deficits in aged animals without increasing the incidence of microhemorrhages.

Conclusions: Data from this transitional pre-clinical study suggest that our DNA epitope vaccine could be used as a safe and effective strategy for AD therapy. Future safety and immunology studies in large animals with the goal to achieve effective humoral immunity without adverse effects should help to translate this study to human clinical trials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2358976PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0002124PLOS

Publication Analysis

Top Keywords

dna epitope
16
epitope vaccine
16
3xtg-ad mouse
8
mouse model
8
safe effective
8
anti-abeta antibody
8
cell epitope
8
epitope
6
vaccine
5
reducing ad-like
4

Similar Publications

: is the leading cause of chronic gastritis, peptic ulcer, gastric adenocarcinoma, and mucosal-associated lymphoma. Due to the emerging problems with antibiotic treatment against in clinical practice, vaccination has gained more interest. Oral immunization is considered a promising approach for preventing initial colonization of this bacterium in the gastrointestinal tract, establishing a first line of defense at gastric mucosal surfaces.

View Article and Find Full Text PDF

The unique redox properties of nanoscale cerium dioxide determine its diverse application in biology and medicine as a regulator of oxidative metabolism. Lipid modifiers of the nanoparticle surface change their biochemical properties and bioavailability. Complexes with lipids can be formed upon contact of the nanoparticles with the membrane.

View Article and Find Full Text PDF

Background: Toxoplasma infections are highly prevalent worldwide and can cause serious complications in immunocompromised individuals and lead to congenital infections in neonates. Despite ongoing efforts to develop T. gondii vaccines, none have been developed.

View Article and Find Full Text PDF

Since the precursor frequency of naive T cells is extremely low, investigating the early steps of antigen-specific T cell activation is challenging. To overcome this detection problem, adoptive transfer of a cohort of T cells purified from T cell receptor (TCR) transgenic donors has been extensively used but is not readily available for emerging pathogens. Constructing TCR transgenic mice from T cell hybridomas is a labor-intensive and sometimes erratic process, since the best clones are selected based on antigen-induced CD69 upregulation or IL-2 production in vitro, and TCR chains are polymerase chain reaction (PCR)-cloned into expression vectors.

View Article and Find Full Text PDF

Developing human papillomavirus (HPV) therapeutic DNA vaccines requires an effective delivery system, such as cell-penetrating peptides (CPPs). In the current study, the multiepitope DNA constructs harboring the immunogenic and conserved epitopes of the L1, L2, and E7 proteins of HPV16/18 (pcDNA-L1-L2-E7 and pEGFP-L1-L2-E7) were delivered using KALA and REV CPPs with different properties in vitro and in vivo. Herein, after confirmation of the REV/DNA and KALA/DNA complexes, their stability was investigated against DNase I and serum protease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!