Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To investigate the fluid tolerance of hemorrhagic shock with pulmonary edema (HSPE) at high altitude in unacclimated rats and the beneficial effect of 7.5% hypertonic saline/6% dextran (HSD). One hundred seventy-six Sprague-Dawley rats, transported to LaSa, Tibet, 3,760 m above the sea level, were anesthetized with sodium pentobarbital (30 mg/kg, i.p.) within 1 week. Hemorrhagic shock with pulmonary edema was induced by bloodletting (50 mmHg for 1 h) plus intravenous injection of oleic acid (50 microL/kg). Seventy-seven rats were equally divided into 11 groups (n = 7/group) including sham-operated control group; hemorrhagic shock control group; HSPE control group; HSPE plus 0.5-, 1.0-, 1.5-, 2.0-, or 3.0-fold volumes of lactated Ringer's solution (LR) groups; and HSPE plus 4, 6, and 8 mL/kg of HSD groups. Hemodynamic parameters including mean arterial blood pressure, left intraventricular systolic pressure, and the maximal change rate of intraventricular pressure rise or decline (+/-dp/dtmax) were observed at baseline and at 15, 30, 60, and 120 min after infusion; blood gases were measured at 30 and 120 min after infusion, and the water content of lung and brain was determined at 120 min after infusion. Additional 99 rats were used to observe the effect of these treatments on the survival time of HSPE rats; 0.5 volume of LR infusion slightly increased the mean arterial blood pressure, left intraventricular systolic pressure, and +/-dp/dtmax and prolonged the survival time of HSPE animals as compared with the HSPE group (P < 0.05 - 0.01); it did not increase the water content of lung and brain and had no marked influences on blood gases. One volume of LR infusion had somewhat improved the hemodynamic parameters for HSPE animals, but had no apparent effect on the survival time and the water content of lung and brain. Lactate Ringer's solution infusion, 1.5, 2, and 3 volumes, significantly deteriorated the hemodynamic parameters, increased the water content of lung, and decreased the survival time of HSPE animals. Hypertonic saline/6% dextran (4 - 8 mL/kg) significantly increased the hemodynamic parameters, improved the blood gases, decreased the water content of lung and brain, and prolonged the survival time of HSPE rats. Among the three dosages of HSD, 6 mL/kg of HSD had the best effect. The tolerance of fluid infusion for hemorrhagic shock with pulmonary edema at high altitude is significantly decreased. More than one volume of LR infusion would aggravate the pulmonary edema and exacerbate the resuscitation effect, but only one volume of LR cannot reach the effective volume resuscitation. Small volume of HSD could better resuscitate hemorrhagic shock with pulmonary edema at high altitude.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/SHK.0b013e31816f6b5b | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!