The cystic kidney disease nephronophthisis (NPHP) is the commonest genetic cause of end-stage renal failure in young people and children. Histologically the disease is characterized by interstitial fibrosis, tubular atrophy with corticomedullary cyst development and disruption of the tubular basement membrane. Affected children present with polydipsia and polyuria, secondary to a urinary concentration defect, before these structural changes develop. Recently, molecular genetic advances have identified several genes mutated in NPHP, providing novel insights into its pathophysiology for the first time in decades. Here we review the normal physiological mechanisms of urinary concentration and explain, in the context of recent discoveries, the possible mechanisms underlying urinary concentration defects in patients with NPHP. The pattern of a ciliary and adherens junction subcellular localization of nephrocystin proteins is discussed. Recent animal models of cystic kidney disease and treatment with vasopressin V2 receptor antagonists are reviewed and a hypothesis regarding urinary concentration defects in NPHP is proposed. Understanding the cellular mechanisms underlying NPHP and other cystic kidney diseases will provide the rationale for therapeutic interventions in this disease. Early urinary concentration defects provide both a clue to clinical diagnosis of NPHP and potential therapeutic targets for pharmacological treatment of this condition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000129648 | DOI Listing |
Metabolomics
January 2025
Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Background: Gestational exposure to non-persistent endocrine-disrupting chemicals (EDCs) may be associated with adverse pregnancy outcomes. While many EDCs affect the endocrine system, their effects on endocrine-related metabolic pathways remain unclear. This study aims to explore the global metabolome changes associated with EDC biomarkers at delivery.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Clinical Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
This study is designed to assess the effect of root extract of P. ginseng on kidney tissue injury attributed to cisplatin and its molecular mechanism involved in this process in the AKI rat model. Twenty-four male Wistar rats were randomly allocated into 4 experimental groups including: the control group, the cisplatin group, the extract 100 mg/kg group, and the extract 200 mg/kg group.
View Article and Find Full Text PDFClin Nutr ESPEN
January 2025
Department of Gastroenterology and Hepatology, Intestinal Failure Unit, Radboud University Medical Centre Nijmegen, Geert Grooteplein 10, 6500 HB, Nijmegen, The Netherlands. Electronic address:
Background And Aims: Measurement of the urine sodium concentration (USC) is a simple procedure that in many patients adequately indicates their hydration status. This is of particular importance in patients suffering from short bowel syndrome (SBS), who may very rapidly dehydrate and are at risk for permanently compromising their kidney function. A point of care test (POCT) that allows reliable measurement of USC would enable these patients to effectively evaluate their sodium- and water balance in the at home setting, thereby avoiding hospital visits and delayed test results.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Spain. Electronic address:
The presence of cells in urine and in particular White Blood Cells (WBCs) is often associated with Urinary Tract Infections (UTIs) and other diseases. Non-invasive screening of WBCs requires the development of cost-effective point of care diagnostic tools. Infrared (IR) spectroscopy has the potential to identify and quantify cells in urine.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Department of Pediatrics, The Third Xiangya Hospital of Central South University, Changsha 410013, China. Electronic address:
Glyphosate, a widely used herbicide globally, has prompted concerns regarding its potential health impacts. This study aimed to explore the link between glyphosate exposure and renal function by combining NHANES, a zebrafish model, and metabolomics. A cross-sectional analysis of 2013-2014 NHANES data investigated the relationship between glyphosate exposure and renal function [albumin-to-creatinine ratio (ACR) and estimated glomerular filtration rate (eGFR)].
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!