The ultrastructure of the developmental stages of the myxozoan Enteromyxum leei parasitizing gilthead seabream (Sparus aurata) intestine and sharpsnout sea bream (Diplodus puntazzo) intestine and gallbladder are described. The earliest stage observed was a small dense trophozoite located among enterocytes. Proliferative stages, observed intercellularly in the epithelium of the intestine and gallbladder as well as in the lumen, possessed the typical cell-in-cell configuration throughout their development. Secondary cells were seen undergoing division within a common vacuolar membrane that also encompassed pairs of tertiary cells. Cytochemical studies showed that primary cells stored mainly lipids whereas secondary cells stored abundant beta-glycogen granules. Sporogonic development resembled that described for other disporous myxozoans. Within sporogonic stages, nonsporogonic secondary cells were observed accompanying two developing spores. Mature spores had a binucleated sporoplasm in which glycogen stores were abundant and no sporoplasmosomes were found. Our observations are discussed in relation to our knowledge on other myxozoans of the genus Enteromyxum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1550-7408.2008.00325.x | DOI Listing |
Molecules
January 2025
Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all'Adige, TN, Italy.
This study explores the impact of geographical origin, harvest time, and cooking on the volatile organic compound (VOC) profiles of wild and reared seabream from the Adriatic and Tyrrhenian Seas. A Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS) allowed for VOC profiling with high sensitivity and high throughput. A total of 227 mass peaks were identified.
View Article and Find Full Text PDFMicroorganisms
January 2025
Institute of Aquaculture Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Spain.
The significant microbiota variability represents a key feature that makes the full comprehension of the functional interaction between microbiota and the host an ongoing challenge. To overcome this limitation, in this study, fish intestinal microbiota was analyzed through a meta-analysis, identifying the core microbiota and constructing stochastic Bayesian network (BN) models with SAMBA. We combined three experiments performed with gilthead sea bream juveniles of the same hatchery batch, reared at the same season/location, and fed with diets enriched on processed animal proteins (PAP) and other alternative ingredients (NOPAP-PP, NOPAP-SCP).
View Article and Find Full Text PDFMar Drugs
December 2024
Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal.
Co-products from the frozen fish processing industry often lead to financial losses. Therefore, it is essential to transform these co-products into profitable goods. This study explores the production of fish protein hydrolysates (FPH) from three co-products: the heads and bones of black scabbardfish (), the carcasses of gilthead seabream (), and the trimmings of Nile perch ().
View Article and Find Full Text PDFAquac Nutr
January 2025
Department of Animal Science, Laboratory of Applied Hydrobiology, Agricultural University of Athens, Iera Odos 75 11855, Athens, Greece.
One of the main challenges in aquaculture is the constant search for sustainable alternative feed ingredients that can successfully replace fishmeal (FM) without any negative effects on fish growth and health. The goal of the present study was to develop a toolbox for rapidly anticipating the dynamics of fish growth following the introduction of a new feed; nonlethal, biochemical, and molecular markers that provide insights into physiological changes in the fish. A nutritional challenge by feeding a conventional feed rich in FM protein (FM diet) versus an experimental feed rich in plant protein (PP) and low FM inclusion (PP diet), in 20 different families of gilthead sea bream () was performed.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Institute of Fisheries Science, College of Life Science, National Taiwan University, Taipei, Taiwan. Electronic address:
In this study, a pair of matured specimens of gilthead sea bream (Sparus aurata Linnaeus, 1758) were collected at a depth of approximately 20 m near Keelung Port, northern Taiwan (25°11'32″N, 121°47'8″E), on November 23, 2024. The specimens were identified and confirmed as S. aurata through both morphological and molecular analyses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!