Antimicrobial agents can be used to give antimicrobial properties to polymeric materials used to envelope foods for packaging purposes. In this study, we exploited an atomic force microscopy (AFM) analysis for the characterization of plastic films activated with antimicrobial agents. The aim was to acquire information on the distribution of the antimicrobials on plastic materials with the ultimate scope of understanding the mechanisms of interaction between antimicrobials and materials to be used for food packaging. Four polyethylene films differing in linear, EVA, and erucamide content were activated by 3 different bacteriocins as antimicrobials, namely, nisin and bacteriocins Bac162W from Lactobacillus curvatus and BacAM09 from Lactobacillus plantarum. The spectrum of activity of the bacteriocins was assayed and shown to include several strains of Listeria monocytogenes. The plastic films were activated by a previously developed coating procedure and the surfaces of the active films were examined by AFM. In addition, roughness parameters related to the single surfaces were investigated by an appropriate software. Significant differences were found between the bacteriocin activated and control (nonactivated) films and the activated surfaces showed lower values of average roughness and surface area ratio. It was not always possible to obtain a homogeneous distribution of the bacteriocin preparation following the coating procedure. This result was dependent on the bacteriocin used and its distribution on the different plastic films. Overall, the bacteriocin Bac162W showed the most homogeneous distribution while surfaces treated with nisin, showing a sort of microtexturing, always gave the highest roughness values. Although the issue needs further investigation, the connection between AFM imaging, roughness, and antimicrobial distribution on active packaging showed the potential to improve the understanding of the interactions between plastic films and antimicrobial preparations that can be important for the innovation in food packaging and science.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1750-3841.2008.00713.x | DOI Listing |
Sci Rep
January 2025
Nanotechnology Department, Faculty of Science, Urmia University, Urmia, Iran.
Today, active packaging has become essential to increase food safety and decrease food spoilage. In this study, the aim was to delay spoilage and increase the shelf life of rainbow fish fillets with a new hybrid nanocomposite active packaging. Packaging was fabricated with Ethylene vinyl acetate and active compounds such as rosemary extract, zinc oxide nanoparticles, and modified iron (Fe-MMT).
View Article and Find Full Text PDFCarbohydr Res
January 2025
Institute of Integrated & Honors Studies, Kurukshetra University, Kurukshetra, 136119, Haryana, India. Electronic address:
This study focused on developing biodegradable packaging films based on starch as an alternative to non-biodegradable such as petroleum-derived synthetic polymers. To improve its physicochemical properties, potato starch was chemically modified through phosphorylation. Starch phosphorylation was carried out using cyclic 1,3-propanediol phosphoryl chloride (CPPC), produced phosphorylated starch (PS), and analyzed using Fourier transform infrared (FT-IR), X-ray diffraction (XRD), Nuclear magnetic resonance (NMR), and Thermogravimetric analysis (TGA).
View Article and Find Full Text PDFFood Chem
January 2025
Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia. Electronic address:
The main objective of this study is to prepare sodium alginate (SA)-based biofilms incorporated with watercress oil (WCO) as an antimicrobial material for sustainable food packaging. The physicochemical, antioxidant, and antibacterial properties of the prepared bio-based films were investigated. The antioxidant activity showed a remarkable increase, with DPPH inhibition increasing from 13.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China. Electronic address:
Microplastic contamination of low-density polyethylene mulch and nutrient loss from fertilizers present significant challenges in the crop-growing. In this study, the focus was on creating a biodegradable film that combines the advantages of plastic film, thermal insulation and water retention, as well as the controlled release of fertilizer. A key innovation was the efficient introduction of low molecular weight and low dispersibility of poplar lignin into chitosan and polyvinyl alcohol matrices.
View Article and Find Full Text PDFNanomicro Lett
January 2025
CAS Key Laboratory of Organic Solids, Institute of Chemistry, Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
Finding ways to produce dense and smooth perovskite films with negligible defects is vital for achieving high-efficiency perovskite solar cells (PSCs). Herein, we aim to enhance the quality of the perovskite films through the utilization of a multifunctional additive in the perovskite anti-solvent, a strategy referred to as anti-solvent additive engineering. Specifically, we introduce ortho-substituted-4'-(4,4″-di-tert-butyl-1,1':3',1″-terphenyl)-graphdiyne (o-TB-GDY) as an AAE additive, characterized by its sp/sp-cohybridized and highly π-conjugated structure, into the anti-solvent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!