Experimental analyses of decay in a tunicate deuterostome and three lophotrochozoans indicate that the controls on decay and preservation of embryos, identified previously based on echinoids, are more generally applicable. Four stages of decay are identified regardless of the environment of death and decay. Embryos decay rapidly in oxic and anoxic conditions, although the gross morphology of embryos is maintained for longer under anoxic conditions. Under anoxic reducing conditions, the gross morphology of the embryos is maintained for the longest period of time, compatible with the timescale required for bacterially mediated mineralization of soft tissues. All four stages of decay were encountered under all environmental conditions, matching the spectrum of preservational qualities encountered in all fossil embryo assemblages. The preservation potential of embryos of deuterostomes and lophotrochozoans is at odds with the lack of such embryos in the fossil record. Rather, the fossil record of embryos, as sparse as it is, is dominated by forms interpreted as ecdysozoans, cnidarians, and stem-metazoans. The dearth of deuterostome and lophotrochozoan embryos may be explained by the fact that ecdysozoans, at least, tend to deposit their eggs in the sediment rather than through broadcast spawning. However, fossil embryos remain very rare and the main controlling factor on their fossilization may be the unique conspiracy of environmental conditions at a couple of sites. The preponderance of fossilized embryos of direct developers should not be used in evidence against the existence of indirect development at this time in animal evolutionary history.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1525-142X.2008.00242.xDOI Listing

Publication Analysis

Top Keywords

fossil record
12
embryos
10
stages decay
8
anoxic conditions
8
conditions gross
8
gross morphology
8
morphology embryos
8
embryos maintained
8
environmental conditions
8
decay
6

Similar Publications

Was extinction of New Zealand's avian megafauna an unavoidable consequence of human arrival?

Sci Total Environ

January 2025

School of Biological Sciences, University of Adelaide, Adelaide, SA 5000, Australia; The Environment Institute, University of Adelaide, Adelaide, SA 5000, Australia; Center for Macroecology, Evolution, and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark; Center for Global Mountain Biodiversity, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark. Electronic address:

Human overexploitation contributed strongly to the loss of hundreds of bird species across Oceania, including nine giant, flightless birds called moa. The inevitability of anthropogenic moa extinctions in New Zealand has been fiercely debated. However, we can now rigorously evaluate their extinction drivers using spatially explicit demographic models capturing species-specific interactions between moa, natural climates and landscapes, and human colonists.

View Article and Find Full Text PDF

Negative scaling relationships between both speciation and extinction rates, on the one hand, and the age or duration of organismal groups on the other, are pervasive and recovered in both molecular phylogenetic and fossil time series. The agreement between molecular and fossil data hints at a universal cause and potentially at incongruence between micro- and macroevolution. However, the existence of negative rate scaling in fossil time series has not undergone the same level of scrutiny as in molecular data.

View Article and Find Full Text PDF

Dinosaurs dominated Mesozoic terrestrial ecosystems for ∼160 million years, but their biogeographic origin remains poorly understood. The earliest unequivocal dinosaur fossils appear in the Carnian (∼230 Ma) of southern South America and Africa, leading most authors to propose southwestern Gondwana as the likely center of origin. However, the high taxonomic and morphological diversity of these earliest assemblages suggests a more ancient evolutionary history that is currently unsampled.

View Article and Find Full Text PDF

New modern and Pleistocene fossil micromammal assemblages from Swartkrans, South Africa: Paleobiodiversity, taphonomic, and environmental context.

J Hum Evol

January 2025

Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg WITS, 2050, South Africa; Department of Anthropology, University of Wisconsin, Madison, WI 53706, USA.

The oldest deposit at the hominin-bearing cave of Swartkrans, South Africa, is the Lower Bank of Member 1, dated to ca. 2.2 million years ago.

View Article and Find Full Text PDF

Insights into stem Batomorphii: A new holomorphic ray (Chondrichthyes, Elasmobranchii) from the upper Jurassic of Germany.

PLoS One

January 2025

Department of Palaeontology, Faculty of Earth Sciences, Geography and Astronomy, Evolutionary Research Group, University of Vienna, Vienna, Austria.

The Late Jurassic fossil deposits of southern Germany, collectively known as the 'Solnhofen Archipelago', are one of the world's most important sources of Mesozoic vertebrates. Complete skeletons of cartilaginous fishes (Chondrichthyes), whose skeletal remains are rare in the fossil record and therefore all the more valuable, are represented, among others, by exceptionally well-preserved rays (superorder Batomorphii). Despite their potential for research in several areas, including taxonomy, morphology, ecology, and phylogeny, the number of studies on these chondrichthyans is still very limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!