Methane is used as an alternative carbon source in the denitrification of wastewater lacking organic carbon sources because it is nontoxic and may be efficiently produced by anaerobic biological processes. Methane-dependent denitrification (MDD) in the presence of oxygen requires the co-occurrence of methanotrophy and denitrification. Activated sludge was incubated with 13C-labeled methane in either a nitrate-containing medium or a nitrate-free medium. Then, bacterial and methanotrophic populations were analyzed by cloning analysis and terminal restriction fragment length polymorphism analysis targeting 16S rRNA gene and cloning analysis targeting pmoA genes. DNA-based stable-isotope probing (DNA-SIP) analysis of the 16S rRNA gene revealed an association of the Methylococcaceae and the Hyphomicrobiaceae in a MDD ecosystem. Furthermore, supplementation of nitrate stimulated methane consumption and the activity of methanotrophic populations (i.e. the stimulation of uncultivated relatives of distinct groups of the Methylococcaceae). In particular, uncultured type-X methanotrophs of Gammaproteobacteria were dominant when nitrate was added, i.e. in the MDD incubations. On the other hand, most methanotrophs (types I, II, and X methanotrophs) were found to have been labeled with 13C under nitrate-free conditions. This DNA-SIP study identifies key bacterial populations involved in a MDD ecosystem.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1574-6941.2008.00473.xDOI Listing

Publication Analysis

Top Keywords

methane-dependent denitrification
8
denitrification activated
8
activated sludge
8
stable-isotope probing
8
methanotrophic populations
8
cloning analysis
8
analysis targeting
8
16s rrna
8
rrna gene
8
mdd ecosystem
8

Similar Publications

The anaerobic ammonia oxidation (anammox) process is a pivotal nitrogen removal technique, playing a significant role in the field of wastewater treatment. The paper commences by delineating the merits of the anammox process in comparison to conventional nitrification-denitrification techniques. Subsequently, it delves into the characteristics of different sludge morphologies process of the behavior of anammox bacteria and their reactions to environmental factors.

View Article and Find Full Text PDF

Methane-dependent denitrification by Methylomirabilis: an indirect nitrous oxide sink?

Trends Microbiol

November 2024

Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, 310058 Hangzhou, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China. Electronic address:

Methane-dependent complete denitrification primarily involves nitrate reduction to nitrite by ANME-2d archaea and nitrite reduction to dinitrogen by Methylomirabilis bacteria. 'Candidatus Methylomirabilis sinica' integrates the divisional labor. Physiological traits of this bacterium potentially enable the simultaneous reduction of NO and CH emissions.

View Article and Find Full Text PDF

Revisiting methane-dependent denitrification.

Trends Microbiol

June 2024

Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia. Electronic address:

Methane-dependent denitrification links the global nitrogen and methane cycles. Since its initial discovery in 2006, this process has been understood to involve a division of labor between an archaeal group and a bacterial group, which sequentially perform nitrate and nitrite reduction, respectively. Yao et al.

View Article and Find Full Text PDF

Methane-dependent complete denitrification by a single Methylomirabilis bacterium.

Nat Microbiol

February 2024

Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China.

Methane-dependent nitrate and nitrite removal in anoxic environments is thought to rely on syntrophy between ANME-2d archaea and bacteria in the genus 'Candidatus Methylomirabilis'. Here we enriched and purified a single Methylomirabilis from paddy soil fed with nitrate and methane, which is capable of coupling methane oxidation to nitrate reduction via nitrite to dinitrogen independently. Isotope labelling showed that this bacterium we name 'Ca.

View Article and Find Full Text PDF

The microbial guild coupling anammox and nitrite/nitrate-dependent anaerobic methane oxidation (n-DAMO) is an innovative process to achieve energy-efficient nitrogen removal with the beneficial use of methane in biogas or in anaerobically treated wastewater. Here, metagenomics and metatranscriptomics were used to reveal the microbial ecology of two biofilm systems, which incorporate anammox and n-DAMO for high-level nitrogen removal in low-strength domestic sewage and high-strength sidestream wastewater, respectively. We find that different nitrogen loadings (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!