Glutaminases belong to the large superfamily of serine-dependent beta-lactamases and penicillin-binding proteins, and they catalyze the hydrolytic deamidation of L-glutamine to L-glutamate. In this work, we purified and biochemically characterized four predicted glutaminases from Escherichia coli (YbaS and YneH) and Bacillus subtilis (YlaM and YbgJ). The proteins demonstrated strict specificity to L-glutamine and did not hydrolyze D-glutamine or L-asparagine. In each organism, one glutaminase showed higher affinity to glutamine ( E. coli YbaS and B. subtilis YlaM; K m 7.3 and 7.6 mM, respectively) than the second glutaminase ( E. coli YneH and B. subtilis YbgJ; K m 27.6 and 30.6 mM, respectively). The crystal structures of the E. coli YbaS and the B. subtilis YbgJ revealed the presence of a classical beta-lactamase-like fold and conservation of several key catalytic residues of beta-lactamases (Ser74, Lys77, Asn126, Lys268, and Ser269 in YbgJ). Alanine replacement mutagenesis demonstrated that most of the conserved residues located in the putative glutaminase catalytic site are essential for activity. The crystal structure of the YbgJ complex with the glutaminase inhibitor 6-diazo-5-oxo- l-norleucine revealed the presence of a covalent bond between the inhibitor and the hydroxyl oxygen of Ser74, providing evidence that Ser74 is the primary catalytic nucleophile and that the glutaminase reaction proceeds through formation of an enzyme-glutamyl intermediate. Growth experiments with the E. coli glutaminase deletion strains revealed that YneH is involved in the assimilation of l-glutamine as a sole source of carbon and nitrogen and suggested that both glutaminases (YbaS and YneH) also contribute to acid resistance in E. coli.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735108 | PMC |
http://dx.doi.org/10.1021/bi800097h | DOI Listing |
AMB Express
April 2020
Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo‑ku, Kyoto, 606‑8502, Japan.
Ammonia is an essential substance for agriculture and the chemical industry. The intracellular production of ammonia in yeast (Saccharomyces cerevisiae) by metabolic engineering is difficult because yeast strongly assimilates ammonia, and the knockout of genes enabling this assimilation is lethal. Therefore, we attempted to produce ammonia outside the yeast cells by displaying a glutaminase (YbaS) from Escherichia coli on the yeast cell surface.
View Article and Find Full Text PDFRSC Adv
April 2019
Guangxi Academy of Sciences Nanning 530007 China +86-771-2503940 +86-771-2503973.
: The four-carbon alcohol, butanol, is emerging as a promising biofuel and efforts have been undertaken to improve several microbial hosts for its production. However, most organisms have very low tolerance to -butanol (up to 2% (v/v)), limiting the economic viability of butanol production. Although genomic tools (transcriptomics, proteomics, and metabolomics) have been widely used to investigate the cellular response to butanol stress, the existing knowledge of the molecular mechanisms involved in butanol tolerance is limited, and strain improvement is difficult due to the complexity of the regulatory network.
View Article and Find Full Text PDFFront Microbiol
November 2018
Department of Medico-Surgical Sciences and Biotechnologies, Laboratory Affiliated to the Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Latina, Italy.
Neutralophilic bacteria have developed several strategies to overcome the deleterious effects of acid stress. In particular, the amino acid-dependent systems are widespread, with their activities overlapping, covering a rather large pH range, from 6 to <2. Recent reports showed that an acid resistance (AR) system relying on the amino acid glutamine (AR2_Q), the most readily available amino acid in the free form, is operative in , and some species.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
January 2018
Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), 4-2-1 Nigatake, Miyagino-ku, Sendai, Miyagi 983-8551, Japan.
Direct enzyme immobilization by encapsulation in the pores of mesoporous silica particles enhances protein thermal and chemical stability. In this study, we investigated the effect of pore size on the thermostability and catalytic activity of Escherichia coli glutaminase YbaS encapsulated under high temperature conditions in two SBA-type mesoporous silicas: SBA5.4 and SBA10.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2017
School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, University of Queensland, St. Lucia, QLD 4072, Australia.
Copper (Cu) is a key antibacterial component of the host innate immune system and almost all bacterial species possess systems that defend against the toxic effects of excess Cu. The Cu tolerance system in Gram-negative bacteria is composed minimally of a Cu sensor (CueR) and a Cu export pump (CopA). The and genes are encoded on the chromosome typically as a divergent but contiguous operon.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!