Thermosensitive and salt-sensitive molecularly imprinted hydrogel for bovine serum albumin.

Langmuir

Beijing National Laboratory for Molecular Sciences, The Key Laboratory of Bioorganic Chemistry & Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Published: June 2008

A novel stimuli-responsive protein imprinted polymer for selective recognition of bovine serum albumin is presented. N-[3-(Dimethylamino)propyl]-methacrylamide, which is positively charged in neutral solution and is able to self-assemble onto the template protein through electrostatic interaction, was chosen as the functional monomer. Polymerization was carried out in the presence of N-isopropylacrylamide as an assistant monomer, which resulted in a stimuli-responsive protein imprinted polymer. The template proteins were easily removed by treatment with 500 mmol L(-1) NaCl solution. The influences of the external stimuli, such as temperature and ionic strength, on the polymer affinity were investigated, and a clear conformational memory was observed. The association constant ( Ka) and binding capacity ( Qmax) for the specific interaction between the protein imprinted polymer and the template protein were determined by Scatchard plots and found to be 9.6 x 10(4) L mol(-1) and 4.7 micromol g(-1), respectively. Several proteins different in molecular weight and isoelectric point were employed as reference, and it was shown that the charge effect and the shape memory effect were the major factors affecting the imprint formation and template recognition. Finally, this imprinted polymer was used to purify the bovine serum albumin from the protein mixture and real sample, which demonstrated its high selectivity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la703963fDOI Listing

Publication Analysis

Top Keywords

imprinted polymer
16
bovine serum
12
serum albumin
12
protein imprinted
12
stimuli-responsive protein
8
template protein
8
polymer template
8
protein
6
imprinted
5
polymer
5

Similar Publications

Chameleon-inspired molecular imprinted polymer with bicolored states for visual and stable detection of diethylstilbestrol in water and food samples.

Food Chem

December 2024

Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, 300070 Tianjin, People's Republic of China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, People's Republic of China. Electronic address:

A novel biomimetic molecular imprinted polymer chip with fluorescence (FL) and structural (STR) states, inspired by color patterns of chameleon skin, is fabricated for detecting diethylstilbestrol (DES). The chip features a regularly structured, non-closed-packed (NCP) colloidal photonic crystal (CPC) lattice made monodisperse MIP spheres containing fluorescence poly ionic liquid (FPIL) pigments. The FL color originates from FPIL pigments and is further enhanced by the Purcell effect, while the STR color results from the periodic arrangement of the NCP CPC structure.

View Article and Find Full Text PDF

A Review Study on Molecularly Imprinting Surface Plasmon Resonance Sensors for Food Analysis.

Biosensors (Basel)

November 2024

Department of Nutrition and Dietetics, Faculty of Health Sciences, Hasan Kalyoncu University, Gaziantep 27000, Turkey.

Surface plasmon resonance (SPR) sensors have emerged as a powerful tool in biosensing applications due to their ability to provide sensitive and real-time detection of chemical and biological analytes. This review focuses on the development and application of molecularly imprinted polymer (MIP)-based SPR sensors for food analysis. By combining the high selectivity of molecular imprinting techniques with the sensitivity of SPR, these sensors offer significant advantages in detecting food contaminants and other target molecules.

View Article and Find Full Text PDF

Fabrication of bio-mimic nanozyme based on Mxene@AuNPs and molecular imprinted poly(thionine) films for creatinine detection.

Biosens Bioelectron

December 2024

Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea. Electronic address:

Creatinine (Ctn) is a biomarker for chronic kidney disease (CKD). In this study, a highly sensitive and specific detection method for Ctn based on a molecularly imprinted polymer (MIP) based electrochemical biosensor was developed. Mxene (Mx), which has high absorption properties, was modified using carbon screen-printed electrodes (SPCE).

View Article and Find Full Text PDF

The impact of coarse aggregate mineral compositions on skid resistance performance of asphalt pavement: A comprehensive study.

PLoS One

December 2024

Key Laboratory of Intelligent Construction and Maintenance of CAAC, Xi'an, Shaanxi, China.

This study aimed to investigate the influence of different coarse aggregate mineral compositions on the skid resistance performance of asphalt pavement. The imprint method was utilized to assess the contact probability between various graded asphalt surface aggregates and tires. Additionally, macroscopic adhesive friction coefficients between polished surfaces of three types of rock slabs (basalt, limestone, granite) and rubber were determined using a pendulum friction tester.

View Article and Find Full Text PDF

Porous polymers, including hydrogels, covalent organic frameworks (COFs), and hyper crosslinked polymers (HCPs), have become essential in biomedical research for their tunable pore architectures, large surface areas, and functional versatility. This review provides a comprehensive overview of their classification and updated synthesis mechanisms, such as 3D printing, electrospinning, and molecular imprinting. Their pivotal roles in drug delivery, tissue engineering, wound healing, and photodynamic/photothermal therapies, focusing on how pore size, distribution, and architecture impact drug release, cellular interactions, and therapeutic outcomes, are explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!