The aim of the present study was to enhance the dissolution rate of gliclazide using its solid dispersions (SDs) with polyethylene glycol (PEG) 6000. The phase solubility behavior of gliclazide in presence of various concentrations of PEG 6000 in 0.1 N HCl was obtained at 37 degrees C. The solubility of gliclazide increased with increasing amount of PEG 6000 in water. Gibbs free energy (deltaG(o)(tr)) values were all negative, indicating the spontaneous nature of gliclazide solubilization and they decreased with increase in the PEG 6000 concentration, demonstrating that the reaction conditions became more favorable as the concentration of PEG 6000 increased. The SDs of gliclazide with PEG 6000 were prepared at 1:1, 1:2 and 1:5 (gliclazide/PEG 6000) ratio by melting-solvent method and solvent evaporation method. Evaluation of the properties of the SDs was performed by using dissolution, Fourier-transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC) and X-ray diffraction (XRD) studies. The SDs of gliclazide with PEG 6000 exhibited enhanced dissolution rate of gliclazide, and the rate increased with increasing concentration of PEG 6000 in SDs. Mean dissolution time (MDT)of gliclazide decreased significantly after preparation of SDs and physical mixture with PEG 6000. The FTIR spectroscopic studies showed the stability of gliclazide and absence of well-defined gliclazide-PEG 6000 interaction. The DSC and XRD studies indicated the microcrystalline or amorphous state of gliclazide in SDs of gliclazide with PEG 6000.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2976917 | PMC |
http://dx.doi.org/10.1208/s12249-008-9079-z | DOI Listing |
Plants (Basel)
January 2025
Rongcheng Chudao Aquaculture Co., Ltd., Rongcheng 264312, China.
Low-salinity conditions are generally used in land-based cultivation to promote the germination and growth of L. and to improve the restoration effect of seagrass beds. Different salinity conditions lead to morphological and physiological differences.
View Article and Find Full Text PDFBiology (Basel)
January 2025
Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India.
Saffron ( L.), a perennial geophyte from the Iridaceae family, blooms in autumn and thrives in Mediterranean-like climates. It is highly valued for its therapeutic and commercial uses.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Germplasm Resources in North China, Ministry of Education, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China.
Plant-specific homeodomain-leucine zipper I (HD-Zip I) transcription factors (TFs) crucially regulate plant drought tolerance. However, their specific roles in maize (Zea mays L.) regulating drought tolerance remain largely unreported.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Centre of Biotechnology, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India.
The severe climate change has caused a drastic water level disparity around the globe, which eventually has been one of the biggest problems of this era related to land degradation. This has caused the multidimensional impact on ecology, the environment, and their components. Algae, one of the ancient micro-engineers, are involved in the functioning of soil microcosm.
View Article and Find Full Text PDFPoult Sci
January 2025
Chinese-German Joint Laboratory for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, PR China; Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada. Electronic address:
This study presents a novel and efficient method for extracting immunoglobulin Y (IgY) antibodies from egg yolk based on the principle of liquid-liquid phase separation (LLPS) induced by polyethylene glycol 8000 (PEG 8000). Initial delipidation of egg yolk samples with varying PEG 8000 concentrations demonstrated optimal delipidation efficiency and protein recovery at 2.5 % PEG 8000 concentration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!