In the present study, we studied the involvement of BMP-2 and BMP-7 as homodimers and as a mixture of homodimers in bone regeneration using an engineered bone model. The engineered bone model consisted of a collagen scaffold populated with osteoblasts that acted as a carrier for the BMPs. BMP-2, BMP-7 and a mixture of BMP-2/BMP-7 were used at final concentrations of 10 and 100 ng ml(-1). Osteoblasts seeded onto a collagen scaffold were cultured for 24 h before being stimulated with the BMPs. Four days later, osteoblast adhesion to and growth on the scaffold were assessed. Osteocalcin, IL-6, metalloproteinase (MMP-2 and MMP-9) and protease inhibitor (TIMP-1 and TIMP-2) mRNA and protein levels were measured. Our results showed that the BMP-2, BMP-7 and a mixture of BMP-2/BMP-7 all promoted osteoblast growth on the collagen scaffold, with the mixture of BMP-2/BMP-7 enhancing the most growth. BMP-2 and the mixture of BMP-2/BMP-7 enhanced osteocalcin (an osteoblast differentiation marker) mRNA expression and protein secretion, likely via the IL-6 pathway given that IL-6 secretion was upregulated by BMP-7 and a mixture of BMP-2/BMP-7. BMPs promote extracellular matrix production by inhibiting MMP-2 mRNA and increasing TIMP-1 and TIMP-2 mRNA expressions and protein secretions. BMP-2, BMP-7 and the mixture of BMP-2/BMP-7 could promote bone regeneration via different mechanisms involving IL-6 and MMP inhibitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1748-6041/3/1/015008 | DOI Listing |
Biomed Mater
March 2008
Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec G1K 7P4, Canada.
In the present study, we studied the involvement of BMP-2 and BMP-7 as homodimers and as a mixture of homodimers in bone regeneration using an engineered bone model. The engineered bone model consisted of a collagen scaffold populated with osteoblasts that acted as a carrier for the BMPs. BMP-2, BMP-7 and a mixture of BMP-2/BMP-7 were used at final concentrations of 10 and 100 ng ml(-1).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!