Glucose is a fundamental metabolite, yet how cells sense and respond to changes in extracellular glucose concentration is not completely understood. We recently reported that the MondoA:Mlx dimeric transcription factor directly regulates glycolysis. In this article, we consider whether MondoA:Mlx complexes have a broader role in sensing and responding to glucose status. In their latent state, MondoA:Mlx complexes localize to the outer mitochondrial membrane, yet shuttle between the mitochondria and the nucleus. We show that MondoA:Mlx complexes accumulate in the nucleus in response to glucose and 2-deoxyglucose (2-DG). Furthermore, nuclear localization of MondoA:Mlx depends on the enzymatic activity of hexokinases. These enzymes catalyze conversion of glucose to glucose-6-phosphate (G6P), which is the first step in the glycolytic pathway. Together, these findings suggest that MondoA:Mlx monitors intracellular G6P concentration and translocates to the nucleus when levels of this key metabolite increase. Transcriptional profiling experiments demonstrate that MondoA is required for >75% of the 2-DG-induced transcription signature. We identify thioredoxin-interacting protein (TXNIP) as a direct and glucose-regulated MondoA:Mlx transcriptional target. Furthermore, MondoA:Mlx complexes, via their regulation of TXNIP, are potent negative regulators of glucose uptake. These studies suggest a key role for MondoA:Mlx complexes in the adaptive transcriptional response to changes in extracellular glucose concentration and peripheral glucose uptake.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2383952PMC
http://dx.doi.org/10.1073/pnas.0712199105DOI Listing

Publication Analysis

Top Keywords

mondoamlx complexes
24
mondoamlx
10
glucose
9
thioredoxin-interacting protein
8
changes extracellular
8
extracellular glucose
8
glucose concentration
8
glucose uptake
8
complexes
6
glucose sensing
4

Similar Publications

The wood frog, Rana sylvatica, is one of only a few vertebrate species that display natural freeze tolerance. Frogs survive the freezing of about two-thirds of their body water as extracellular ice over the winter months. Multiple adaptations support freeze tolerance including metabolic rate depression and the production of huge amounts of glucose (often 200 mM or more) as a cryoprotectant that protects cells from freeze damage.

View Article and Find Full Text PDF

MondoA-Mlx transcriptional activity is limited by mTOR-MondoA interaction.

Mol Cell Biol

January 2015

Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, USA

Mammalian target of rapamycin (mTOR) integrates multiple signals, including nutrient status, growth factor availability, and stress, to regulate cellular and organismal growth. How mTOR regulates transcriptional programs in response to these diverse stimuli is poorly understood. MondoA and its obligate transcription partner Mlx are basic helix-loop-helix leucine zipper (bHLHZip) transcription factors that sense and execute a glucose-responsive transcriptional program.

View Article and Find Full Text PDF

MondoA senses adenine nucleotides: transcriptional induction of thioredoxin-interacting protein.

Biochem J

July 2013

Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA.

The MondoA-Mlx transcription complex plays a pivotal role in glucose homoeostasis by activating target gene expression in response to G6P (glucose 6-phosphate), the first reaction intermediate in glycolysis. TXNIP (thioredoxin-interacting protein) is a direct and glucose-responsive target of MondoA that triggers a negative-feedback loop by restricting glucose uptake when G6P levels increase. We show in the present study that TXNIP expression is also activated by AICAR (5-amino-4-imidazolecarboxamide ribofuranoside) and adenosine.

View Article and Find Full Text PDF

Glucose controls nuclear accumulation, promoter binding, and transcriptional activity of the MondoA-Mlx heterodimer.

Mol Cell Biol

June 2010

Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112-5550, USA.

Maintenance of energy homeostasis is a fundamental requirement for organismal fitness: defective glucose homeostasis underlies numerous metabolic diseases and cancer. At the cellular level, the ability to sense and adapt to changes in intracellular glucose levels is an essential component of this strategy. The basic helix-loop-helix-leucine zipper (bHLHZip) transcription factor complex MondoA-Mlx plays a central role in the transcriptional response to intracellular glucose concentration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!