MicroRNAs (miRNAs) are an abundant class of small noncoding RNAs that function as negative gene regulators. miRNA deregulation is involved in the initiation and progression of human cancer; however, the underlying mechanism and its contributions to genome-wide transcriptional changes in cancer are still largely unknown. We studied miRNA deregulation in human epithelial ovarian cancer by integrative genomic approach, including miRNA microarray (n = 106), array-based comparative genomic hybridization (n = 109), cDNA microarray (n = 76), and tissue array (n = 504). miRNA expression is markedly down-regulated in malignant transformation and tumor progression. Genomic copy number loss and epigenetic silencing, respectively, may account for the down-regulation of approximately 15% and at least approximately 36% of miRNAs in advanced ovarian tumors and miRNA down-regulation contributes to a genome-wide transcriptional deregulation. Last, eight miRNAs located in the chromosome 14 miRNA cluster (Dlk1-Gtl2 domain) were identified as potential tumor suppressor genes. Therefore, our results suggest that miRNAs may offer new biomarkers and therapeutic targets in epithelial ovarian cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2383982 | PMC |
http://dx.doi.org/10.1073/pnas.0801615105 | DOI Listing |
Int J Mol Sci
January 2025
Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland.
Epithelial ovarian cancer (EOC) remains a leading cause of gynecologic cancer mortality. Despite advances in treatment, metastatic progression and resistance to standard therapies significantly worsen patient outcomes. Epithelial-mesenchymal transition (EMT) is a critical process in metastasis, enabling cancer cells to gain invasive and migratory capabilities, often driven by changing miRNA expression involved in the regulation of pathological processes like drug resistance.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Laboratory of Gynecological Preclinical Oncology, Department of Experimental Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy.
Mucinous epithelial ovarian cancer (mEOC) is a rare subtype of epithelial ovarian cancer, characterized by poor responses to standard platinum-based chemotherapy. Polo-like kinase 1 (PLK1) is a key regulator of mitosis and cell cycle progression and its inhibition has been recently identified as a target in mEOC. In this study, we aimed to identify further therapeutic targets in mEOC using a CRISPR/Cas9 library targeting 3015 genes, with and without treatment with onvansertib, a PLK1 inhibitor.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany.
This study aimed to construct a risk score (RS) based on necroptosis-associated genes to predict the prognosis of patients with advanced epithelial ovarian cancer (EOC). EOC data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) series 140082 (GSE140082) were used. Based on known necroptosis-associated genes, clustering was performed to identify molecular subtypes of EOC.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Department of Gynaecological Oncology, Barts Health NHS Trust, Royal London Hospital, London E1 1FR, UK.
Background/objective: Platinum-resistant ovarian cancer (PROC) has limited therapeutic options, and the role of cytoreductive surgery (CRS) in improving survival outcomes remains uncertain. We performed a systematic review to evaluate the oncological benefit of CRS on PROC patients and the associated surgical morbidity and mortality.
Methods: We followed a prospective protocol according to PRISMA guidelines.
Cancers (Basel)
January 2025
Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Japan.
Background/objectives: S100A4, a small calcium-binding protein, promotes metastasis in a variety of human malignancies, but little is known about its involvement in ovarian clear cell carcinoma (OCCC). Herein, we characterized the functional role of S100A4 in this tumor type.
Methods: We analyzed immunohistochemical sections from 120 OCCC patients.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!