A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

beta-Adrenergic receptor activation induces internalization of cardiac Cav1.2 channel complexes through a beta-arrestin 1-mediated pathway. | LitMetric

Voltage-dependent calcium channels (VDCCs) play a pivotal role in normal excitation-contraction coupling in cardiac myocytes. These channels can be modulated through activation of beta-adrenergic receptors (beta-ARs), which leads to an increase in calcium current (I(Ca-L)) density through cardiac Ca(v)1 channels as a result of phosphorylation by cAMP-dependent protein kinase A. Changes in I(Ca-L) density and kinetics in heart failure often occur in the absence of changes in Ca(v)1 channel expression, arguing for the importance of post-translational modification of these channels in heart disease. The precise molecular mechanisms that govern the regulation of VDCCs and their cell surface localization remain unknown. Our data show that sustained beta-AR activation induces internalization of a cardiac macromolecular complex involving VDCC and beta-arrestin 1 (beta-Arr1) into clathrin-coated vesicles. Pretreatment of myocytes with pertussis toxin prevents the internalization of VDCCs, suggesting that G(i/o) mediates this response. A peptide that selectively disrupts the interaction between Ca(V)1.2 and beta-Arr1 and tyrosine kinase inhibitors readily prevent agonist-induced VDCC internalization. These observations suggest that VDCC trafficking is mediated by G protein switching to G(i) of the beta-AR, which plays a prominent role in various cardiac pathologies associated with a hyperadrenergic state, such as hypertrophy and heart failure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2427351PMC
http://dx.doi.org/10.1074/jbc.C800061200DOI Listing

Publication Analysis

Top Keywords

activation induces
8
induces internalization
8
internalization cardiac
8
ica-l density
8
heart failure
8
cardiac
5
beta-adrenergic receptor
4
receptor activation
4
internalization
4
cardiac cav12
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!