To determine which endocytic compartments are sensitive to sucrose-induced osmotic swelling, CHO and Vero cells were cultured for 1-3 days in media containing 0.03 to 0.05 M sucrose. (Sucrose is internalized but not digested by these cells.) To immunolocalize late endocytic compartments, cells were fixed with formaldehyde and labeled with antibodies against the 215-kDa mannose 6-phosphate receptor (prelysosomal compartment) and LAMP-1 and -2 (mature lysosomes). Early endosomes were labeled by a 2-min uptake of lucifer yellow, mature lysosomes by greater than or equal to 16-h uptake of lucifer yellow followed by a 2-h chase. The data showed that sucrose induced swelling of mature lysosomes only (mannose 6-phosphate receptor negative, LAMP-1 and LAMP-2 positive); early endosomes and the prelysosomal compartment were not affected by the presence of sucrose, i.e., osmotically swollen. Accumulation of lucifer yellow in the swollen compartment was insensitive to cycloheximide. These results suggest, by inference, that the complement of membrane transport proteins that regulate the osmotic properties of endocytic organelles must be discontinuously distributed along the endocytic pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0014-4827(91)90156-oDOI Listing

Publication Analysis

Top Keywords

mature lysosomes
16
endocytic compartments
12
lucifer yellow
12
osmotic swelling
8
mannose 6-phosphate
8
6-phosphate receptor
8
prelysosomal compartment
8
early endosomes
8
uptake lucifer
8
endocytic
5

Similar Publications

Neurofilament accumulation is associated with many neurodegenerative diseases, but it is the primary pathology in giant axonal neuropathy (GAN). This childhood-onset autosomal recessive disease is caused by loss-of-function mutations in gigaxonin, the E3 adaptor protein that enables neurofilament degradation. Using a combination of genetic and RNA interference approaches, we found that dorsal root ganglia from mice lacking gigaxonin have impaired autophagy and lysosomal degradation through 2 mechanisms.

View Article and Find Full Text PDF

To degrade or not to degrade: how phase separation modulates selective autophagy.

Autophagy

March 2025

Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.

Selective macroautophagy/autophagy relies on newly formed double-membrane compartments, known as phagophores, to sequester and recycle diverse cellular components, including organelles, biomolecular condensates and protein aggregates, maturing into autophagosomes that fuse with the vacuole/lysosome. Autophagosomes originate at the cargo-vacuole/ER interface, where autophagy factors assemble into the phagophore assembly site (PAS). However, how autophagy proteins organize on the surface of structurally and biophysically different cargoes, and achieve spatial confinement at the PAS to support autophagosome formation remains unclear.

View Article and Find Full Text PDF

Endosomes are central organelles in the recycling and degradation of receptors and membrane proteins. Once endocytosed, such proteins are sorted at endosomes into intraluminal vesicles (ILVs). The resulting multivesicular bodies (MVBs) then fuse with the lysosomes, leading to the degradation of ILVs and recycling of the resulting monomers.

View Article and Find Full Text PDF

Background And Aim: Generation of functional cardiomyocytes from human pluripotent stem cells (hPSCs) offers promising applications for cardiac regenerative medicine. Proper control of pluripotency and differentiation is vital for generating high-quality cardiomyocytes and repairing damaged myocardium. Cathepsin K, a lysosomal cysteine protease, is a potential target for cardiovascular disease treatment; however, its role in cardiomyocyte differentiation and regeneration is unclear.

View Article and Find Full Text PDF

Status epilepticus (SE) is a life-threatening neurological emergency characterized by persistent seizures, leading to brain damage that increases the risk of recurrent seizures due to abnormal electrical impulses produced by damaged neurons. However, the molecular mechanism by which convulsive SE leads to neuronal damage is not completely understood. Cathepsin S (Ctss), a lysosomal cysteine protease, has been implicated in secondary injury after traumatic brain injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!