Dry powder inhalers (DPIs) are widely used to deliver respiratory medication as a fine powder. This study investigates the physical mechanism of DPI operation, assessing the effects of geometry, inhalation and powder type on dose fluidisation. Patient inhalation through an idealised DPI was simulated as a linearly increasing pressure drop across three powder dose reservoir geometries permitting an analysis of shear and normal forces on dose evacuation. Pressure drop gradients of 3.3, 10 and 30 kPa s(-1)were applied to four powder types (glass, aluminium, and lactose 6 and 16% fines) and high speed video of each powder dose fluidisation was recorded and quantitatively analysed. Two distinct mechanisms are identified, labelled 'fracture' and 'erosion'. 'Fracture' mode occurs when the initial evacuation occurs in several large agglomerates whilst 'erosion' mode occurs gradually, with successive layers being evacuated by the high speed gas flow at the bed/gas interface. The mechanism depends on the powder type, and is independent of the reservoir geometries or pressure drop gradients tested. Both lactose powders exhibit fracture characteristics, while aluminium and glass powders fluidise as an erosion. Further analysis of the four powder types by an annular shear cell showed that the fluidisation mechanism cannot be predicted using bulk powder properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2008.03.038 | DOI Listing |
Int J Mol Sci
July 2023
Department of Materials, Imperial College London, London SW7 2AZ, UK.
Recent discovery and investigation of the flow of glasses under the electron beams of transmission electron microscopes raised the question of eventual occurrence of such type effects in the vitrified highly radioactive nuclear waste (HLW). In connection to this, we analyse here the flow of glasses and glass-liquid transition in conditions of continuous electron irradiation such as under the e-beam of transmission electron microscopes (TEM) utilising the configuron (broken chemical bond) concept and configuron percolation theory (CPT) methods. It is shown that in such conditions, the fluidity of glasses always increases with a substantial decrease in activation energy of flow at low temperatures and that the main parameter that controls this behaviour is the dose rate of absorbed radiation in the glass.
View Article and Find Full Text PDFMaterials (Basel)
September 2021
General Química, S.A.U. (Grupo Dynasol), 01213 Lantaron, Spain.
This work presents an efficient method for treating industrial wastewater containing aniline and benzothiazole, which are refractory to conventional treatments. A combination of heterogeneous photocatalysis operating in a fluidised bed reactor is studied in order to increase mass transfer and reduce reaction times. This process uses a manganese dioxide catalyst supported on granular activated carbon with environmentally friendly characteristics.
View Article and Find Full Text PDFSci Rep
October 2018
Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
Oral folate fortification has been successful in many developed nations, however, developing countries still face low compliance and high incidence of folate deficiency associated with low birth weight infants and preterm deliveries. We report safe and efficient approach for transdermal systemic folate delivery using fluidising liposomes (120 ± 4 nm) stabilised within 3D matrix of naturally occurring cosmetic bases: Fuller's earth and henna with room temperature stability. The proof of stratum corneum fluidisation was established ex-vivo by Langmuir-Blodgett film, FTIR and confocal imaging in rat skin.
View Article and Find Full Text PDFInt J Pharm
October 2018
Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK. Electronic address:
The fine particle fraction is a key indicator of therapeutic effectiveness of inhaled pharmaceutical aerosols. This paper presents a fluorescence imaging technique to visualise and characterise the emission of active pharmaceutical ingredient (API) fines in model formulations containing coarse lactose carrier and 1.5-2 μm diameter fluorescent microspheres (model API fines).
View Article and Find Full Text PDFInt J Pharm
December 2015
Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, United Kingdom. Electronic address:
Effective drug delivery to the lungs by a DPI device requires the air-stream through the device to have sufficient power to aerosolise the powder. Furthermore, sufficient turbulence must be induced, along with particle-wall and particle-particle collisions, in order to de-aggregate small drug particles from large carrier particles. As a result, the emitted and the fine particle doses produced by many commercially available DPI devices tend to be strongly affected by the natural inter-patient variability of the inhaled air flow.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!