The fluorescence intensity and lifetime of the 4,4'-difluoro-4-bora-5-(p-oxoalkyl)phenyl-3a,4a-diaza-s-indacene (1) show a strong correlation with the viscosity of the medium due to the viscosity-dependent twisting of the 5-phenyl group, which gives access to the dark nonemissive excited state. We propose a sensitive and versatile method for measuring the local microviscosity in biological systems, based on the determination of the fluorescence lifetime of 1. Fluorescence lifetime imaging (FLIM) performed on live cells incubated with 1 demonstrates the distinct intracellular lifetime of the molecular rotor of 1.6 +/- 0.2 ns corresponding to the intracellular viscosity of ca. 140 cP. Time-resolved fluorescence anisotropy of 1 in cells confirms insignificant binding of the fluorophore. The viscosity value obtained in the present study is considerably higher than that of water and of cellular cytoplasm. The high viscosity of intracellular compartments is likely to play an important role in vital intracellular processes, including the rate of diffusion of reactive oxygen species, causing programmed cell destruction.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja800570dDOI Listing

Publication Analysis

Top Keywords

fluorescence lifetime
12
molecular rotor
8
live cells
8
lifetime imaging
8
viscosity
5
fluorescence
5
lifetime
5
rotor measures
4
measures viscosity
4
viscosity live
4

Similar Publications

Fluorescence imaging has been widely used in fields like (pre)clinical imaging and other domains. With advancements in imaging technology and new fluorescent labels, fluorescence lifetime imaging is gradually gaining recognition. Our research department is developing the CAM, based on the Current-Assisted Photonic Sampler, to achieve real-time fluorescence lifetime imaging in the NIR (700-900 nm) region.

View Article and Find Full Text PDF

Ratiometric lanthanide coordination polymers (Ln-CPs) are advanced materials that combine the unique optical properties of lanthanide ions (e.g., Eu, Tb, Ce) with the structural flexibility and tunability of coordination polymers.

View Article and Find Full Text PDF

Metal-organic complexes with long afterglow luminescence have attracted extensive attention due to potential applications in display, sensing and information security. However, most of the metal-organic complex long afterglow materials reported so far are limited to the use of UV light as the excitation source, and the ambiguity of the structure-activity relationship makes the development of metal-organic complexes extremely limited. Herein, a series of metal-organic complexes with ultralong emission lifetime is constructed by coordination assembly of Zn(II) with three isomers.

View Article and Find Full Text PDF

Under conditions that are close to the real cellular environment, the human telomeric single-stranded overhang (∼200 nt) consisting of tens of TTAGGG repeats tends to form higher order structures of multiple G-quadruplex (G4) blocks. On account of the higher biological relevance of higher order G4 structures, ligand compounds binding to higher order G4 are significant for the drug design toward inhibiting telomerase activity. Here, we study the interaction between a cationic porphyrin derivative, 5,10,15,20-tetra{4-[2-(1-methyl-1-piperidinyl)propoxy]phenyl}porphyrin (T4), and a human telomeric G4-dimer (AG(TAG)) in the mimic intracellular molecularly crowded environment (PEG as a crowding agent) and K or Na solution (i.

View Article and Find Full Text PDF

Rapid Acquisition of High-Pixel Fluorescence Lifetime Images of Living Cells via Image Reconstruction Based on Edge-Preserving Interpolation.

Biosensors (Basel)

January 2025

State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.

Fluorescence lifetime imaging (FLIM) has established itself as a pivotal tool for investigating biological processes within living cells. However, the extensive imaging duration necessary to accumulate sufficient photons for accurate fluorescence lifetime calculations poses a significant obstacle to achieving high-resolution monitoring of cellular dynamics. In this study, we introduce an image reconstruction method based on the edge-preserving interpolation method (EPIM), which transforms rapidly acquired low-resolution FLIM data into high-pixel images, thereby eliminating the need for extended acquisition times.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!