Estrogen metabolism is suggested to play an important role in estrogen-induced breast carcinogenesis. Epidemiologic studies suggest that diets rich in phytoestrogens are associated with a reduced risk of breast cancer. Phytoestrogens are biologically active plant compounds that structurally mimic 17beta-estradiol (E(2)). We hypothesize that phytoestrogens, may provide protection against breast carcinogenesis by altering the expression of estrogen-metabolizing enzymes cytochrome P450 1A1 (Cyp1A1) and 1B1 (Cyp1B1). Cyp1A1 and Cyp1B1 are responsible for the metabolism of E(2) to generate 2-hydroxyestradiol (2-OHE(2)) and 4-hydroxyestradiol (4-OHE(2)), respectively. Studies suggest that 2-OHE(2) and 2-methoxyestradiol may protect against breast carcinogenesis, while 4-OHE(2) is carcinogenic in rodent models. Thus, agents that increase the metabolism of E(2) by Cyp1A1 to produce 2-OHE(2) may have chemoprotective properties. The human immortalized non-neoplastic breast cell line MCF10F was treated with quercetin at 10 and 50muM concentrations for time points ranging from 3 to 48h. Total RNA and protein were isolated. Real-time PCR was used to measure the expression of Cyp1A1 and Cyp1B1 mRNA. Quercetin treatment produced differential regulation of Cyp1A1 and Cyp1B1 mRNA expression in a time- and dose-dependent manner. Treatment with 10 and 50 microM doses of quercetin produced 6- and 11-times greater inductions of Cyp1A1 mRNA over Cyp1B1 mRNA, respectively. Furthermore, quercetin dramatically increased Cyp1A1 protein levels and only slightly increased Cyp1B1 protein levels in MCF10F cells. Thus, our data suggest that phytoestrogens may provide protection against breast cancer by modulating expression of estrogen-metabolizing genes such that production of the highly carcinogenic estrogen metabolite 4-OHE(2) by Cyp1B1 is reduced and the production of the less genotoxic 2-OHE(2) by Cyp1A1 is increased.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2533731 | PMC |
http://dx.doi.org/10.1016/j.jsbmb.2008.03.029 | DOI Listing |
J Chem Inf Model
January 2025
Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, Indiana 47907, United States.
Drug-drug interaction can lead to diminished therapeutic effects or increased toxicity, posing significant risks, especially in polypharmacy, and cytochrome P450 plays an indispensable role in this interaction. Cytochrome P450, responsible for the metabolism and detoxification of most drugs, metabolizes about 90% of Food and Drug Administration-approved drugs, making early detection of potential drug-drug interactions. Over the years, in-silico modeling has become a valuable tool for predicting drug-drug interactions.
View Article and Find Full Text PDFComput Biol Chem
January 2025
Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea; Elicure, 12, Gyeongyeol-ro 17 beon-gil, Seo-gu, Gwangju, Republic of Korea. Electronic address:
This study aimed to profile metabolites from five Trichoderma strains and assess their cytotoxic and pharmacological activities, particularly targeting oral squamous cell carcinoma (OSCC). UHPLC-TOF-MS analysis revealed the presence of 25 compounds, including heptelidic acid, viridiol isomers, and sorbicillinol from the different Trichoderma extracts. Pharmacokinetic analysis showed moderate permeability and low interaction with P-glycoprotein, suggesting good drug absorption with minimal interference in cellular uptake.
View Article and Find Full Text PDFEnzyme Microb Technol
January 2025
Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Water Science and Technology for Sustainable Environment Research Unit, Chulalongkorn University, Bangkok 10330, Thailand. Electronic address:
Inducer-free expression systems are promising tools for biorefinery because they can reduce the reliance on inducers, reducing production costs and simplifying processes. Owing to their broad range of substrate structures and catalytic reactions, cytochrome P450s are promising biocatalysts to produce value-added compounds. However, unsuitable levels of cytochrome P450 expression could result in cell stress, affecting the efficiency of the biocatalyst.
View Article and Find Full Text PDFReprod Biol Endocrinol
January 2025
Department of Molecular and Developmental Medicine, Siena University, Siena, 53100, Italy.
Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).
View Article and Find Full Text PDFZhonghua Nei Ke Za Zhi
February 2025
Department of Endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou450003, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!