mAtNOS1 induces apoptosis of human mammary adenocarcinoma cells.

Life Sci

Department of Surgery, Heart and Lung Research Institute, and Institute of Mitochondrial Biology, The Ohio State University, Columbus, Ohio, USA.

Published: May 2008

mAtNOS1 is a novel gene recently reported in mammalian genome with functions that are not fully understood. The present study shows that in human mammary adenocarcinoma MCF-7 cells, mAtNOS1 expression increases mitochondrial nitric oxide and calcium. Our study further shows that overexpression of mAtNOS1 induces apoptosis in MCF-7 cells by increasing mitochondrial protein tyrosine nitration and cytochrome c release. The present study suggests a novel function for mAtNOS1 in regulating mitochondrial nitric oxide and calcium and inducing apoptosis of MCF-7 cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2008.03.019DOI Listing

Publication Analysis

Top Keywords

mcf-7 cells
12
matnos1 induces
8
induces apoptosis
8
human mammary
8
mammary adenocarcinoma
8
cells matnos1
8
mitochondrial nitric
8
nitric oxide
8
oxide calcium
8
apoptosis mcf-7
8

Similar Publications

This study aimed to define the antitumor effect of ethanolic extract of Pistacia vera leaves (PEE) toward breast cancer both in vitro and in vivo using dimethyl-benz(a)anthracene (DMBA)-induced breast tumor in adult female rats. PEE showed a potent antioxidant effect toward both DPPH (1,1-diphenyl-2-picrylhydrazyl) and ABTS (2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) radicals with IC values of 72.6 and 107.

View Article and Find Full Text PDF

Dual-template epitope imprinted nanoparticles for anti-glycolytic tumor-targeted treatment.

J Colloid Interface Sci

December 2024

State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China; National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. Electronic address:

Glycolysis provides tumors with abundant nutrients through glucose (Glu) metabolism. As a therapeutic target, precise targeting and effective inhibition of the glycolysis process remains a major challenge in anti-metabolic therapy. In this study, a novel dual-template molecularly imprinted polymer (D-MIP), capable of specifically recognizing glucose transporter member 1 (GLUT1) and hexokinase-2 (HK2) was prepared for anti-glycolytic tumor therapy.

View Article and Find Full Text PDF

In women globally, breast cancer ranks as the second most frequent cause of cancer-related deaths, making up about 25% of female cancer cases, which is pretty standard in affluent countries. Breast cancer is divided into subtypes based on aggressive, genetic and stage. The precise cause of the problem is still unknown.

View Article and Find Full Text PDF

In this present investigation, plant-mediated synthesis of titanium oxide (TiO) nanoparticles was synthesized from seagrass (Thalassia hemprichi) using the hot plate combustion method (HPCM). Synthesized TiO nanoparticles optical, functional, structural, and morphology properties were analyzed by UV-visible spectroscopy, Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). SEM analysis confirmed the spherical shape of the TiO nanoparticles were observed in various sizes, viz.

View Article and Find Full Text PDF

The electrochemical biosensor has brought a paradigm shift in the field of sensing due to its fast response and easy operability. The performance of electrochemical sensors can be modified by coupling them with various metal oxides, nanomaterials, and nanocomposites. Hydrogen peroxide is a short-lived reactive oxygen species that plays a crucial role in various physiological and biological processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!