It is becoming increasingly apparent that probiotics are important to the health of the host. The absence of probiotic bacteria in the gut can have adverse effects not only locally in the gut, but has also been shown to affect central HPA and monoaminergic activity, features that have been implicated in the aetiology of depression. To evaluate the potential antidepressant properties of probiotics, we tested rats chronically treated with Bifidobacteria infantis in the forced swim test, and also assessed the effects on immune, neuroendocrine and central monoaminergic activity. Sprague-Dawley rats were treated for 14 days with B. infantis. Probiotic administration in naive rats had no effect on swim behaviours on day 3 or day 14 following the commencement of treatment. However, there was a significant attenuation of IFN-gamma, TNF-alpha and IL-6 cytokines following mitogen stimulation (p<0.05) in probiotic-treated rats relative to controls. Furthermore, there was a marked increase in plasma concentrations of tryptophan (p<0.005) and kynurenic acid (p<0.05) in the bifidobacteria-treated rats when compared to controls. Bifidobacteria treatment also resulted in a reduced 5-HIAA concentration in the frontal cortex and a decrease in DOPAC in the amygdaloid cortex. The attenuation of pro-inflammatory immune responses, and the elevation of the serotonergic precursor, tryptophan by bifidobacteria treatment, provides encouraging evidence in support of the proposition that this probiotic may possess antidepressant properties. However, these findings are preliminary and further investigation into the precise mechanisms involved, is warranted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jpsychires.2008.03.009 | DOI Listing |
Carbohydr Polym
February 2025
Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands.
Background: Exopolysaccharides (EPS) from probiotic bacteria like bifidobacteria, have gained considerable attention for the beneficial effects they exert in the gastrointestinal environment. Here, we investigated whether EPS isolated from Bifidobacterium longum subsp. infantis and Bifidobacterium adolescentis can interact with Toll-like receptors (TLRs) in a structure-dependent way and subsequently we investigated whether they influence cytokine-production in dendritic cells (DCs).
View Article and Find Full Text PDFFood Res Int
November 2024
School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, China. Electronic address:
Carbohydr Polym
January 2025
Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands. Electronic address:
ISME J
January 2024
Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, Wageningen 6708WE, the Netherlands.
Quickly after birth, the gut microbiota is shaped via species acquisition and resource pressure. Breastmilk, and more specifically, human milk oligosaccharides are a determining factor in the formation of microbial communities and the interactions between bacteria. Prominent human milk oligosaccharide degraders have been rigorously characterized, but it is not known how the gut microbiota is shaped as a complex community.
View Article and Find Full Text PDFAppl Environ Microbiol
October 2024
APC Microbiome Ireland, University College Cork, Cork, Ireland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!