Aims: Collagen, as a component of the extracellular matrix, has been linked to atherosclerotic plaque formation and stability. Activation of LOX-1, a lectin-like oxidized low-density lipoprotein (LDL) receptor-1, exerts a significant role in collagen formation. We examine the hypothesis that LOX-1 deletion may inhibit collagen accumulation in atherosclerotic arteries in LDL receptor (LDLR) knockout (KO) mice.

Methods And Results: We generated LOX-1 KO and LOX-1/LDLR double KO mice on a C57BL/6 (wild-type mice) background and fed a 4% cholesterol/10% cocoa butter diet for 18 weeks. Vessel wall collagen accumulation was increased in association with atherogenesis in the LDLR KO mice (P < 0.01 vs. wild-type mice), but much less so in the double KO mice (P < 0.01 vs. LDLR KO mice). Collagen accumulation data were corroborated with pro-collagen I measurements. Expression/activity of osteopontin, fibronectin, and matrix metalloproteinases (MMP-2 and MMP-9) was also increased in the LDLR KO mice (P < 0.01 vs. wild-type mice), but not in the mice with LOX-1 deletion (P < 0.01 vs. LDLR KO mice). The expression of NADPH oxidase (p47(phox), p22(phox), gp91(phox), and Nox-4 subunits) and nitrotyrosine was increased in the LDLR KO mice (P < 0.01 vs. wild-type mice) and not in mice with LOX-1 deletion (P < 0.01 vs. LDLR KO mice). Phosphorylation of Akt-1 and endothelial nitric oxide synthase and expression of haem-oxygenase-1 were found to be reduced in the LDLR KO mice (P < 0.01 vs. wild-type mice), but not in the mice with LOX-1 deletion (P < 0.01 vs. LDLR KO mice).

Conclusion: LOX-1 deletion reduces enhanced collagen deposition and MMP expression in atherosclerotic regions via inhibition of pro-oxidant signals.

Download full-text PDF

Source
http://dx.doi.org/10.1093/cvr/cvn110DOI Listing

Publication Analysis

Top Keywords

ldlr mice
28
lox-1 deletion
24
wild-type mice
20
mice 001
20
mice
18
collagen accumulation
16
001 wild-type
16
001 ldlr
16
mice mice
12
mice lox-1
12

Similar Publications

Background: To investigate whether the antiPCSK9 vaccine can affect the CRP and oxidative stress (OS) during acute systemic inflammation.

Methods: Male albino mice were randomly divided into three groups: non-treated mice (the sham group), treated with a nonspecific stimulator of the immune response - Freund's complete adjuvant (CFA; the CFA group), and vaccinated mice treated with CFA (the vaccine group). The vaccine group was subcutaneously immunized with the antiPCSK9 formulation, 4 × in bi-weekly intervals.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM), a metabolic disorder, has the hallmarks of persistent hyperglycemia, insulin resistance, and dyslipidemia. Protein-tyrosine phosphatase 1B (PTP1B) was found to be overexpressed in many tissues in the case of T2DM and involved in the negative regulation of insulin signaling. So, PTP1B inhibition can act as a therapeutic target for T2DM.

View Article and Find Full Text PDF

Background: Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of mortality globally. Hypercholesterolemia accelerates atherosclerotic development and is an independent modifiable risk factor for ASCVD. Reducing cholesterol levels is effective in preventing ASCVD.

View Article and Find Full Text PDF

The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) progressing to metabolic dysfunction-associated steatohepatitis (MASH), characterized by hepatic inflammation, has significantly increased in recent years due to unhealthy dietary practices and sedentary lifestyles. Cathepsin D (CTSD), a lysosomal protease involved in lipid homeostasis, is linked to abnormal lipid metabolism and inflammation in MASH. Although primarily intracellular, CTSD can be secreted extracellularly.

View Article and Find Full Text PDF

Introduction: T-cadherin, a non-canonical member of the cadherin superfamily, was initially identified for its involvement in homophilic recognition within the nervous and vascular systems. Apart from its adhesive function, T-cadherin acts as a receptor for two ligands: LDL, contributing to atherogenic processes, and HMW adiponectin, a hormone with well-known cardiovascular protective properties. However, the precise role of T-cadherin in adipose tissue remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!