To explore the agronomic potential of an Australian coal fly ash, we conducted two glasshouse experiments in which we measured chlorophyll fluorescence, CO2 assimilation (A), transpiration, stomatal conductance, biomass accumulation, seed yield, and elemental uptake for canola (Brassica napus) grown on soil amended with an alkaline fly ash. In Experiment 1, application of up to 25 Mg/ha of fly ash increased A and plant weight early in the season before flowering and seed yield by up to 21%. However, at larger rates of ash application A, plant growth, chlorophyll concentration, and yield were all reduced. Increases in early vigor and seed yield were associated with enhanced uptake of phosphorus (P) by the plants treated with fly ash. Fly ash application did not influence accumulation of B, Cu, Mo, or Zn in the stems at any stage of plant growth or in the seed at harvest, except Mo concentration, which was elevated in the seed. Accumulation of these elements was mostly in the leaves, where concentrations of Cu and Mo increased with any amount of ash applied while that of B occurred only with ash applied at 625 Mg/ha. In Experiment 2, fly ash applied at 500 Mg/ha and mixed into the whole 30 cm soil core was detrimental to growth and yield of canola, compared with restricting mixing to 5 or 15 cm depth. In contrast, application of ash at 250 Mg/ha with increasing depth of mixing increased A and seed yield. We concluded that fly ash applied at not more than 25 Mg/ha and mixed into the top 10 to 15 cm of soil is sufficient to obtain yield benefits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2134/jeq2007.0021 | DOI Listing |
Sci Rep
January 2025
College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, People's Republic of China.
Aiming at the problem that it is difficult to realize low-cost, high-performance and large-scale utilization of cementitious materials prepared from bulk solid wastes, this paper constructs a set of composite cementitious system based on alkaline activation of slag and fly ash (FA) by calcium carbide slag (CCS) and synergistic activation of sodium sulfate (NaSO) as a chemical dopant. The influence of factors such as solid waste type, mixing ratio, and NaSO content on the mechanical properties of composite cementitious systems was investigated by assessing compressive strength and analyzing microstructure using XRD, SEM-EDS, and FTIR. The test results indicate that CCS and NaSO exert significant influences on the strength of the composite cementitious system.
View Article and Find Full Text PDFWaste Manag
January 2025
Earth Sciences Department, University of Turin 10125 Turin, Italy.
This study investigates steam washing (SW) as an innovative pretreatment for municipal solid waste incineration fly ash (MSWI-FA) dechlorination, useful for a more effective stabilization in cementitious matrix. By using a detailed analytical approach (XRPD, XRF, ICP-MS, IRMS, SEM) and geochemical modeling, great focus is dedicated on pollutant leaching reduction and changes in ash physicochemical characteristics as a function of exposure time. The research demonstrates that SW removes up to 70 % cadmium, 17 % zinc, and 10 % lead, primarily by dissolving the soluble and carbonate/hydroxide fractions and promoting the reprecipitation and adsorption of heavy metals into more stable compounds.
View Article and Find Full Text PDFChemistryOpen
January 2025
Department of Chemistry, University of Botswana, Botswana Private bag UB, Gaborone, 00704, Botswana.
This study explores the synthesis of ZSM-5 zeolite using high-purity mesoporous silica exclusively derived from coal fly ash (CFA), eliminating the need for additional silica or alumina sources. Traditional ZSM-5 synthesis relies on costly and environmentally harmful pure chemicals, whereas this approach utilizes CFA, an industrial byproduct, addressing both cost and sustainability concerns. The synthesized ZSM-5 zeolite demonstrates exceptional purity, with a surface area of 455.
View Article and Find Full Text PDFSci Rep
January 2025
Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
In the manufacturing of some sectors, such as marble and brick, certain byproducts, such as sludge, powder, and pieces containing valuable chemical compounds, emerge. Some concrete plants utilize these byproducts as mineralogical additives in Turkey. The objective of the experimental study is to ascertain whether the incorporation of waste from the marble and brick industries, in powder form, into cement manufacturing as a mineralogical additive or substitute is a viable option.
View Article and Find Full Text PDFEnviron Technol
January 2025
School of Civil Engineering and Architecture, Wuhan Polytechnic University, Wuhan, People's Republic of China.
This study introduces a novel landfill cover material, employing lake sediment as a substrate, stabilised with fly ash, slag, desulfurisation gypsum and construction waste. The mechanical properties, including shear strength parameters, unconfined compressive strength, hydraulic conductivity, volumetric shrinkage, and water content, of the solidified sludge were evaluated. The microscopic mechanism of the solidified sludge were investigated through XRD, FTIR, and SEM-EDS techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!