RNAi knockdown of transcription factor Pu.1 in the differentiation of mouse embryonic stem cells.

Methods Mol Biol

Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA.

Published: June 2008

Murine embryonic stem (mES) cells are pluripotent cells derived from the inner cell mass of the preimplantation blastocyst. These cells are primitive and undifferentiated and have the potential to become a wide variety of specialized cell types. Mouse ES cells can be regarded as a versatile biological tool that has led to major advances in our understanding of cell and developmental biology. To study specific gene function in early developmental events, gene knockout approaches have been traditionally used, however, this is a time-consuming and expensive approach. Recently, we have shown that small interfering RNA is an effective strategy to knockdown target gene expression, during ES cell differentiation, and consequently, one can alter cell fates in ES-derived differentiated cells. This method will be useful to test the function of a wide variety of gene products using the ES cell differentiation system.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-59745-536-7_10DOI Listing

Publication Analysis

Top Keywords

embryonic stem
8
wide variety
8
cell differentiation
8
cells
6
cell
6
rnai knockdown
4
knockdown transcription
4
transcription factor
4
factor pu1
4
pu1 differentiation
4

Similar Publications

Background: Regeneration is the replacement of lost or damaged tissue with a functional copy. In axolotls and zebrafish, regeneration involves stem cells produced by de-differentiation. These cells form a growth zone which expresses developmental patterning genes at its apex.

View Article and Find Full Text PDF

Sequencing-based genetic tests have uncovered a vast array of BRCA2 sequence variants. Owing to limited clinical, familial and epidemiological data, thousands of variants are considered to be variants of uncertain significance (VUS). Here we have utilized CRISPR-Cas9-based saturation genome editing in a humanized mouse embryonic stem cell line to determine the functional effect of VUS.

View Article and Find Full Text PDF

Divergent destinies: insights into the molecular mechanisms underlying EPI and PE fate determination.

Life Sci Alliance

March 2025

https://ror.org/05f950310 Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium

Mammalian pre-implantation development is entirely devoted to the specification of extra-embryonic lineages, which are fundamental for embryo morphogenesis and support. The second fate decision is taken just before implantation, as defined by the epiblast (EPI) and the primitive endoderm (PE) specification. Later, EPI forms the embryo proper and PE contributes to the formation of the yolk sac.

View Article and Find Full Text PDF

Focal adhesions (FAs) are force-bearing multiprotein complexes, whose nanoscale organization and signaling are essential for cell growth and differentiation. However, the specific organization of FA components to exert spatiotemporal activation of FA proteins for force sensing and transduction remains unclear. In this study, we unveil the intricacies of FA protein nanoarchitecture and that its dynamics are coordinated by a molecular scaffold protein, BNIP-2, to initiate downstream signal transduction for cardiomyoblast differentiation.

View Article and Find Full Text PDF

In RNA interference (RNAi), long double-stranded RNA is cleaved by the Dicer endonuclease into small interfering RNAs (siRNAs), which guide degradation of complementary RNAs. While RNAi mediates antiviral innate immunity in plants and many invertebrates, vertebrates have adopted a sequence-independent response and their Dicer produces siRNAs inefficiently because it is adapted to process small hairpin microRNA precursors in the gene-regulating microRNA pathway. Mammalian endogenous RNAi is thus a rudimentary pathway of unclear significance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!