The pipe and the pinwheel: is pressure an effective stimulus for the 9+0 primary cilium?

Cell Biol Int

Research School of Biological Sciences, The Australian National University, Canberra, ACT 0200, Australia.

Published: April 2008

Almost universally, the effective stimulus for mammalian 9+0 primary cilia has been taken to be bending. In this article I point out that in several physiological contexts there is great advantage in detecting pressure differences across the cell wall, i.e. axially directed forces pushing fluid to and fro through the hollow cilium and its basal body beneath. The form of the cilium--a fluid-filled pipe that connects to an intricate pinwheel-shaped basal body--is well configured for detecting fluid flow. Pressure-detection calls for compressible elements within the cell, but it effectively matches form and function in a range of cases. The "pipe and pinwheel" scheme suggests that the bulbous swellings commonly found near the tip of some primary cilia are compliant, pressure-sensitive elements which act like the bulb of an eye-dropper. In looking exclusively at the bending of cilia, we might be missing aspects of a dual-stimulus system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cellbi.2008.03.001DOI Listing

Publication Analysis

Top Keywords

effective stimulus
8
9+0 primary
8
primary cilia
8
pipe pinwheel
4
pinwheel pressure
4
pressure effective
4
stimulus 9+0
4
primary cilium?
4
cilium? universally
4
universally effective
4

Similar Publications

Predictive updating of an object's spatial coordinates from pre-saccade to post-saccade contributes to stable visual perception. Whether object features are predictively remapped remains contested. We set out to characterise the spatiotemporal dynamics of feature processing during stable fixation and active vision.

View Article and Find Full Text PDF

Temporal impacts of diverse concentrations of pilocarpine ophthalmic solution on human accommodation.

Clin Exp Optom

January 2025

Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.

Clinical Relevance: Accommodation is crucial for clear near vision and is predominantly affected by presbyopia. The ability to modulate accommodative function with eye drops could offer a pharmacological approach to manage presbyopia.

Background: To investigate the effects of different concentrations of pilocarpine eye drops on ocular accommodation in young volunteers.

View Article and Find Full Text PDF

Ovarian granulosa cells produce a variety of biologically active compounds in addition to steroid hormones that include numerous families of growth factors, cytokines and adipokines. Many of these function as endocrine, paracrine and autocrine hormones to regulate ovarian activity. The goal of this review is to provide an update on the evidence in domestic animals on how FSH, insulin and IGF1 regulate the function of granulosa cells with a focus on ovarian steroidogenesis and cell proliferation with comparisons across six domestic animals: pigs, cattle, horses, water buffalo, goats and sheep.

View Article and Find Full Text PDF

A hyperelastic torque-reversal mechanism for soft joints with compression-responsive transient bistability.

Sci Robot

January 2025

Biorobotics Laboratory, Soft Robotics Research Center, Institute of Advanced Machines and Design, Department of Mechanical Engineering, Institute of Engineering, Seoul National University, Seoul, Republic of Korea.

Snap-through, a rapid transition of a system from an equilibrium state to a nonadjacent equilibrium state, is a valuable design element of soft devices for converting a monolithic stimulus into systematic responses with impulsive motions. A common way to benefit from snap-through is to embody it within structures and materials, such as bistable structures. Torque-reversal mechanisms discovered in nature, which harness snap-through instability via muscular forces, may have comparative advantages.

View Article and Find Full Text PDF

Hyperalgesic priming is a model system that has been widely used to understand plasticity in painful stimulus-detecting sensory neurons, called nociceptors. A key feature of this model system is that following priming, stimuli that do not normally cause hyperalgesia now readily provoke this state. We hypothesized that hyperalgesic priming occurs because of reorganization of translation of mRNA in nociceptors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!