Genetic variation among individual humans occurs on many different scales, ranging from gross alterations in the human karyotype to single nucleotide changes. Here we explore variation on an intermediate scale--particularly insertions, deletions and inversions affecting from a few thousand to a few million base pairs. We employed a clone-based method to interrogate this intermediate structural variation in eight individuals of diverse geographic ancestry. Our analysis provides a comprehensive overview of the normal pattern of structural variation present in these genomes, refining the location of 1,695 structural variants. We find that 50% were seen in more than one individual and that nearly half lay outside regions of the genome previously described as structurally variant. We discover 525 new insertion sequences that are not present in the human reference genome and show that many of these are variable in copy number between individuals. Complete sequencing of 261 structural variants reveals considerable locus complexity and provides insights into the different mutational processes that have shaped the human genome. These data provide the first high-resolution sequence map of human structural variation--a standard for genotyping platforms and a prelude to future individual genome sequencing projects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2424287 | PMC |
http://dx.doi.org/10.1038/nature06862 | DOI Listing |
Funct Integr Genomics
January 2025
Children's Medical Center, Peking University First Hospital, No.5 Le Yuan Road, Daxing District, 100034, Beijing, China.
Long-read sequencing has emerged as a transformative technology in recent years, offering significant potential for the molecular diagnosis of unresolved genetic disorders. Despite its promise, the comprehensive detection and clinical annotation of genomic variants remain intricate and technically demanding. We present SUMMER, an integrated and structured workflow specifically designed to process raw Nanopore sequencing reads.
View Article and Find Full Text PDFEcology
January 2025
Department of Biology, Appalachian State University, Boone, North Carolina, USA.
The importance of trait variation has long been recognized in ecological and evolutionary research. The divergence of sexually dimorphic traits (e.g.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States.
The structure and dynamics of water at charged graphene interfaces fundamentally influence molecular responses to electric fields with implications for applications in energy storage, catalysis, and surface chemistry. Leveraging the realism of the MB-pol data-driven many-body potential and advanced path-integral quantum dynamics, we analyze the vibrational sum frequency generation (vSFG) spectrum of graphene/water interfaces under varying surface charges. Our quantum simulations reveal a distinctive dangling OH peak in the vSFG spectrum at neutral graphene, consistent with recent experimental findings yet markedly different from those of earlier studies.
View Article and Find Full Text PDFFront Public Health
January 2025
Centre of Genomics and Policy, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada.
Introduction: This qualitative research study aimed to better understand and help improve the Canadian context for health communication with intersex adults by centering the voices of those directly involved and impacted.
Methods: We conducted 22 semi-structured interviews with intersex individuals (14) and healthcare practitioners (HCPs, 8) from diverse areas of care. Interviews were analyzed via template thematic analysis and filtered through a conceptual lens that brought together agency-based and social-ecological models of health communication.
RSC Adv
January 2025
Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig Beethovenstr. 55 38106 Braunschweig Germany
The antimicrobial properties of silver and silver complexes have been known in medicine since ancient times. However, limitations in stability and solubility have impaired medicinal chemistry and drug development research. With the advent of N-heterocyclic carbenes (NHC) as ligands, the development of synthesis methods for organometallic silver species of the type (NHC)AgX (where X = halide) has brought significant improvements, and the class of antimicrobial silver NHC complexes has emerged.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!