(+/-)-3-Hydroxy-4,5,6,6a-tetrahydro-3aH-pyrrolo [3,4 -d]-isoxazole-4-carboxylic acid (HIP-A) and (+/-)-3-hydroxy-4,5,6, 6a-tetrahydro-3aH-pyrrolo[3,4-d]isoxazole-6-carboxylic acid (HIP-B) are selective inhibitors of excitatory amino acid transporters (EAATs), as potent as DL-threo-beta-benzyloxyaspartic acid (TBOA). We report here that the active isomers are (-)-HIP-A and (+)-HIP-B, being approximately 150- and 10-fold more potent than the corresponding enantiomers as inhibitors of [3H]aspartate uptake in rat brain synaptosomes and hEAAT1-3-expressing cells. Comparable IC(50) values were found on the three hEAAT subtypes. (-)-HIP-A maintained the remarkable property, previously reported with the racemates, of inhibiting synaptosomal glutamate-induced [3H]D-aspartate release (reverse transport) at concentrations significantly lower than those inhibiting [3H]L-glutamate uptake. New data suggest that the noncompetitive-like interaction described previously is probably the consequence of an insurmountable, long-lasting impairment of EAAT's function. Some minutes of preincubation are required to induce this impairment, the duration of preincubation having more effect on inhibition of glutamate-induced release than of glutamate uptake. In organotypic rat hippocampal slices and mixed mouse brain cortical cultures, TBOA, but not (-)-HIP-A, had toxic effects. Under ischemic conditions, a neuroprotective effect was found with 10 to 30 microM (-)-HIP-A, but not with 10 to 30 microM TBOA or 100 microM (-)-HIP-A. The effect of (-)-HIP-A suggests that, under ischemia, EAATs mediate both release (reverse transport) and uptake of glutamate. The neuroprotection with the lower (-)-HIP-A concentrations may indicate a selective inhibition of the reverse transport confirming the data obtained in synaptosomes. The selective interference with glutamate-induced glutamate release might offer a new strategy for neuroprotective action.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/jpet.107.135251 | DOI Listing |
Asia Pac J Ophthalmol (Phila)
January 2025
Rescue, Repair and Regeneration Theme, UCL Institute of Ophthalmology, London, United Kingdom. Electronic address:
Purpose: Recovery rate of rod photoreceptor sensitivity (S2 gradient) following a bleach is reduced in age-related macular degeneration (AMD) due to diminished delivery of retinol across a grossly altered Bruch's membrane. Since triterpenoid saponins are known to improve transport across Bruch's, we have assessed their possible use for reversing the visual deficits in AMD.
Design: Double-blind, placebo controlled randomised clinical trial.
Theranostics
January 2025
Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032.
Record-breaking heatwaves caused by greenhouse effects lead to multiple hyperthermia disorders, the most serious of which is exertional heat stroke (EHS) with the mortality reaching 60 %. Repeat exercise with heat exposure, termed heat acclimation (HA), protects against EHS by fine-tuning feedback control of body temperature (Tb), the mechanism of which is opaque. This study aimed to explore the molecular and neural circuit mechanisms of the HA training against EHS.
View Article and Find Full Text PDFSci Adv
January 2025
New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
Deep brain stimulation technology enables the neural modulation with precise spatial control but requires permanent implantation of conduits. Here, we describe a photothermal wireless deep brain stimulation nanosystem capable of eliminating α-synuclein aggregates and restoring degenerated dopamine neurons in the substantia nigra to treat Parkinson's disease. This nanosystem (ATB NPs) consists of gold nanoshell, an antibody against the heat-sensitive transient receptor potential vanilloid family member 1 (TRPV1), and β-synuclein (β-syn) peptides with a near infrared-responsive linker.
View Article and Find Full Text PDFSmall
January 2025
Central Research Institute, BOE Technology Group Co. Ltd, Beijing, 100176, China.
For quantum-dot light-emitting diodes (QLED), electrical aging commonly introduces collective aging sources across all layers, making it difficult to isolate the impact of each layer on electroluminescence (EL) degradation. In this work, a layer-selective aging method using active photoexcitation is proposed, in which the photoexcitation wavelength is used to selectively target specific layers for exciton generation, and an electrical bias is applied to induce photocurrent and create charges. An iterative aging-sampling (A-S) procedure is used to link aging conditions to EL degradation.
View Article and Find Full Text PDFPhys Fluids (1994)
January 2025
Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7431, USA.
Molecular-scale simulations of pressure-driven transport through polyamide nanogaps (5-100 Å) were performed to investigate fundamental transport mechanisms. Results show that transport in nanogaps 10 Å is always subdiffusive, but superdiffusive transport was observed in nanogaps 20 Å. Near typical operating pressures for applications ( = 100 atm), only the 100 Å nanogap exhibited superdiffusive behavior.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!