A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The estrogen receptor pathway in rhabdomyosarcoma: a role for estrogen receptor-beta in proliferation and response to the antiestrogen 4'OH-tamoxifen. | LitMetric

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children. Highly malignant, RMS frequently fails to respond to conventional aggressive multimodal radiation, surgery, and chemotherapy treatment protocols that also cause significant sequelae in the growing child. Other tumors of mesenchymal origin, such as locally aggressive fibromatoses and desmoid tumors, have been successfully treated with a selective estrogen receptor (ER) modulator, tamoxifen. In an effort to identify new targets for RMS therapy, our group investigated the previously uncharacterized ER pathway in RMS cell culture and primary tumors. We detected ER isoform beta (ER beta), but not isoform alpha, RNA, and protein in five RMS cell lines. Immunohistochemical staining of primary RMS tumor sections confirmed high levels of ER beta but not ER alpha protein. RMS cell growth was dramatically inhibited in steroid-free conditions, and this growth inhibition was rescued with 17-beta-estradiol (E2) supplementation. Exposure of RMS cells to 4'OH-tamoxifen (4OHT) decreased cell viability and inhibited colony formation as detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and colony-forming assays. 4OHT also induced apoptotic signaling in RMS cells as detected by cleavage of caspase-3 and poly(ADP)ribose polymerase. This effect increased 3- to 8-fold in steroid-deprived conditions but was rescued by supplementation with E2. Immunofluorescence studies detected a change in the subcellular localization of ER beta in response to 4OHT. Together, these data suggest an active ER beta-mediated signal transduction pathway in RMS. The ability of 4OHT to induce apoptotic signaling and disrupt estradiol-mediated proliferation provides a rationale to explore a role for selective ER modulators in the treatment of RMS.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-07-3046DOI Listing

Publication Analysis

Top Keywords

rms cell
12
rms
11
estrogen receptor
8
pathway rms
8
protein rms
8
rms cells
8
apoptotic signaling
8
receptor pathway
4
pathway rhabdomyosarcoma
4
rhabdomyosarcoma role
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!