Based on investigation of the earliest colonic tissue alteration in familial adenomatous polyposis (FAP) patients, we present the hypothesis that initiation of colorectal cancer by adenomatous polyposis coli (APC) mutation is mediated by dysregulation of two cellular mechanisms. One involves differentiation, which normally decreases the proportion (proliferative fraction) of colonic crypt cells that can proliferate; the other is a cell cycle mechanism that simultaneously increases the probability that proliferative cells are in S phase. In normal crypts, stem cells (SC) at the crypt bottom generate rapidly proliferating cells, which undergo differentiation while migrating up the crypt. Our modeling of normal crypts suggests that these transitions are mediated by mechanisms that regulate proliferative fraction and S-phase probability. In FAP crypts, the population of rapidly proliferating cells is shifted upwards, as indicated by the labeling index (LI; i.e., crypt distribution of cells in S phase). Our analysis of FAP indicates that these transitions are delayed because the proliferative fraction and S-phase probability change more slowly as a function of crypt level. This leads to expansion of the proliferative cell population, including a subpopulation that has a low frequency of S-phase cells. We previously reported that crypt SC overpopulation explains the LI shift. Here, we determine that SCs (or cells having high stemness) are proliferative cells with a low probability of being in S phase. Thus, dysregulation of mechanisms that control proliferative fraction and S-phase probability explains how APC mutations induce SC overpopulation at the crypt bottom, shift the rapidly proliferating cell population upwards, and initiate colon tumorigenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/0008-5472.CAN-07-2061 | DOI Listing |
BMC Complement Med Ther
January 2025
Laser Research Centre, Faculty of Health Sciences, Doornfontein Campus, University of Johannesburg, Johannesburg, 2028, South Africa.
Background: Amongst all neoplastic diseases, breast cancer represents a major cause of death among the female population in developed and developing countries. Since alkaloid drugs are commonly used in chemotherapy to manage this disease, this study investigated the anti-proliferative effectiveness of alkaloid-rich fractions of Senna didymobotrya leaves only and with laser irradiation against MCF-7 breast cancer cells.
Method And Materials: A powdered sample of the plant leaves was extracted with 50% ethanol, filtered and their pH was adjusted with acid and base solution followed by partitioning with chloroform and ethyl acetate solvents.
Mol Cancer
January 2025
Department of Cell Biology, Physiology, and Immunology, University of Córdoba, CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain.
Background: Hepatocellular carcinoma (HCC) genetic/transcriptomic signatures have been widely described. However, its proteomic characterization is incomplete. We performed non-targeted quantitative proteomics of HCC samples and explored its clinical, functional, and molecular consequences.
View Article and Find Full Text PDFJ Nutr
December 2024
Faculty of Pharmacy, Kanazawa University, Kakuma-machi, Kanazawa, Japan. Electronic address:
Background: Food-derived nucleic acids exhibit various biological activities and may act as nutrients. Oral ingestion of the nucleic acid fraction (NAF) of salmon milt extract hydrolysates enhances cognitive function in mice, although their active ingredients have not yet been identified, and detailed mechanisms of action are unknown.
Objectives: To identify active ingredients enhancing cognitive function contained in the NAF and its possible underlying mechanism.
Oncol Lett
February 2025
American Foundation for Chinese Medicine, New York, NY 10001, USA.
Triple negative breast cancer (TNBC) is characterized by the absence of hormones and growth factor receptors. It is typically responsive to anthracycline/taxol-based conventional chemotherapy. However, major therapeutic limitations include systemic toxicity and acquired resistance to chemotherapeutics.
View Article and Find Full Text PDFFront Bioeng Biotechnol
November 2024
Marbio, Faculty for Fisheries, Biosciences and Economy, UiT-The Arctic University of Norway, Tromsø, Norway.
As the natural producer of acarbose, sp. SE50/110 has high industrial relevance. Like most Actinobacteria, the strain carries several more putative biosynthetic gene clusters (BGCs) to produce further natural products, which are to be discovered.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!