The mammary gland consists of a polarized epithelium surrounded by a basement membrane matrix that forms a series of branching ducts ending in hollow, sphere-like acini. Essential roles for the epithelial basement membrane during acinar differentiation, in particular laminin and its integrin receptors, have been identified using mammary epithelial cells cultured on a reconstituted basement membrane. Contributions from fibronectin, which is abundant in the mammary gland during development and tumorigenesis, have not been fully examined. Here, we show that fibronectin expression by mammary epithelial cells is dynamically regulated during the morphogenic process. Experiments with synthetic polyacrylamide gel substrates implicate both specific extracellular matrix components, including fibronectin itself, and matrix rigidity in this regulation. Alterations in fibronectin levels perturbed acinar organization. During acinar development, increased fibronectin levels resulted in overproliferation of mammary epithelial cells and increased acinar size. Addition of fibronectin to differentiated acini stimulated proliferation and reversed growth arrest of mammary epithelial cells negatively affecting maintenance of proper acinar morphology. These results show that expression of fibronectin creates a permissive environment for cell growth that antagonizes the differentiation signals from the basement membrane. These effects suggest a link between fibronectin expression and epithelial cell growth during development and oncogenesis in the mammary gland.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2748963 | PMC |
http://dx.doi.org/10.1158/0008-5472.CAN-07-2673 | DOI Listing |
Vet Comp Oncol
January 2025
Laboratory of Comparative and Translational Oncology, Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil.
Inflammatory mammary carcinoma (IMC) is the most aggressive variant of invasive mammary tumours in dogs and in women. Decorin is an extracellular matrix molecule whose expression can be reduced or absent in various human cancers, which is associated with a poor prognosis. E-cadherin is a cell adhesion protein whose expression is reduced in several neoplasms.
View Article and Find Full Text PDFCancer Res
January 2025
Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, Rhode Island.
Triple-negative breast cancer (TNBC) is a highly metastatic subtype of breast cancer. The epithelial-to-mesenchymal transition is a nonbinary process in the metastatic cascade that generates tumor cells with both epithelial and mesenchymal traits known as hybrid EM cells. Recent studies have elucidated the enhanced metastatic potential of cancers featuring the hybrid EM phenotype, highlighting the need to uncover molecular drivers and targetable vulnerabilities of the hybrid EM state.
View Article and Find Full Text PDFVet Sci
December 2024
College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.
Cadmium accumulation in the body can damage a variety of organs and impair their development and functions. In the present study, we investigated the effect of cadmium on the stemness and proliferation of normal bovine mammary epithelial cells (BMECs). Normal bovine mammary epithelial cells treated with cadmium chloride were assessed for the expression of stemness-related proteins and cell proliferation.
View Article and Find Full Text PDFMar Drugs
January 2025
The Key Laboratory of Animal Genetic Resource and Breeding Innovation, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
Chitosan oligosaccharide (COS) is receiving increasing attention as a feed additive in animal production. COS has a variety of biological functions, including anti-inflammatory and antioxidant activities. Mastitis is a major disease in dairy cows that has a significant impact on animal welfare and production.
View Article and Find Full Text PDFJ Pers Med
January 2025
Multidisciplinary Breast Centre, Department of Women's and Children's Health Sciences and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy.
B3 breast lesions, classified as lesions of uncertain malignant potential, present a significant diagnostic and therapeutic challenge due to their heterogeneous nature and variable risk of progression to malignancy. These lesions, which include atypical ductal hyperplasia (ADH), papillary lesions (PLs), flat epithelial atypia (FEA), radial scars (RSs), lobular neoplasia (LN), and phyllodes tumors (PTs), occupy a "grey zone" between benign and malignant pathologies, making their management complex and often controversial. This article explores the diagnostic difficulties associated with B3 lesions, focusing on the limitations of current imaging techniques, including mammography, ultrasound, and magnetic resonance imaging (MRI), as well as the challenges in histopathological interpretation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!