In cystic fibrosis (CF) patients, the major alteration in pulmonary function is due to peripheral airway obstruction. In the present study, we investigated the possibility that alterations in the extrathoracic airways, particularly in the trachea that expresses high levels of CFTR (CF transmembrane conductance regulator), may contribute to respiratory dysfunction. We performed morphological analyses of the trachea and airway functional studies in adult Cftr knockout (Cftr(-/-)) and F508del-CFTR mice and their controls. Macroscopic and histological examination of the trachea showed the presence of one to seven disrupted or incomplete cartilage rings in Cftr(-/-) mice (23/25) while only a few Cftr(+/+) mice (6/25) had one abnormal ring. Tracheal defects were mainly localized in the proximal trachea. In 14 Cftr(-/-) mice, frontal disruption of the first three to six rings below the cricoid cartilage were associated with upper tracheal constriction. Similar tracheal abnormalities were detected in adult F508del-CFTR and in newborn Cftr(-/-) and F508del-CFTR mice. Tracheal and ventilatory function analyses showed in Cftr(-/-) mice a decreased contractile response of the proximal trachea and a reduced breathing rate due to an increase in the inspiratory and expiratory times. In F508del-CFTR mice, the expiratory time was longer than in controls. Therefore, these structural and functional abnormalities detected in adult and newborn CF mouse models may represent congenital malformations related to CFTR dysfunction. These results raise important questions concerning the mechanisms governing tracheal development within the context of CFTR protein dysfunction and the implication of such abnormalities in the pathogenesis of airway disease in CF.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2538793 | PMC |
http://dx.doi.org/10.1113/jphysiol.2008.150763 | DOI Listing |
J Cyst Fibros
August 2024
Department of Pediatrics, Yale School of Medicine, New Haven, CT 06520, USA; Department of Cellular and Molecular Physiology Yale School of Medicine, New Haven, CT 06520, USA. Electronic address:
Background: Cystic Fibrosis (CF) is an autosomal recessive genetic disease caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein for which there is no cure. One approach to cure CF is to correct the underlying mutations in the CFTR gene. We have used triplex-forming peptide nucleic acids (PNAs) loaded into biodegradable nanoparticles (NPs) in combination with donor DNAs as reagents for correcting mutations associated with genetic diseases including CF.
View Article and Find Full Text PDFJ Clin Invest
July 2024
Department of Cell Biology.
Cystic fibrosis results from mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel, ultimately leading to diminished transepithelial anion secretion and mucociliary clearance. CFTR correctors are therapeutics that restore the folding/trafficking of mutated CFTR to the plasma membrane. The large-conductance calcium-activated potassium channel (BKCa, KCa1.
View Article and Find Full Text PDFEur J Pharmacol
September 2024
Department of Pediatrics/Gastroenterology and Hepatology, Yale School of Medicine, New Haven, CT, USA; Department of Molecular Physiology, Yale School of Medicine, New Haven, CT, USA. Electronic address:
The CFTR modulator Trikafta has markedly improved lung disease for Cystic Fibrosis (CF) patients carrying the common delta F508 (F508del-CFTR) CFTR mutation. F508del-CFTR results in an apical trafficking defect and loss of function in CFTR-expressing epithelial cells. However, Trikafta has not resulted in improved gastrointestinal function in CF patients.
View Article and Find Full Text PDFClin Chim Acta
July 2024
Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, FL 33136, USA; Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA. Electronic address:
Background And Aims: Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations to the CF transmembrane conductance regulator (CFTR). Symptoms and severity of the disease can be quite variable suggesting modifier genes play an important role.
Materials And Methods: Exome sequencing was performed on six individuals carrying homozygous deltaF508 for CFTR genotype but present with rapidly progressing CF (RPCF).
Sci Rep
January 2024
Physiological Institute, University of Regensburg, University Street 31, 93053, Regensburg, Germany.
The Ca activated Cl channel TMEM16A (anoctamin 1; ANO1) is expressed in secretory epithelial cells of airways and intestine. Previous studies provided evidence for a role of ANO1 in mucus secretion. In the present study we investigated the effects of the two ANO1-inhibitors niclosamide (Niclo) and benzbromarone (Benz) in vitro and in vivo in mouse models for cystic fibrosis (CF) and asthma.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!