The recent completion of a draft sequence of the poplar (Populus trichocarpa Torr. & Gray ex Brayshaw) genome has advanced forest tree genetics to an unprecedented level. A "parts list" for a forest tree has been produced, opening up new opportunities for dissecting the interworkings of tree growth and development. In the relatively near future we can anticipate additional reference genome sequences, including the much larger Pinus genome. One goal is to use this information to define the genomic attributes that affect the phenotypic performances of trees growing in various environments. A first step is the definition of ideotypes that constitute optimal tree and stand-level performance. Following this, the genome can be systematically searched for genetic elements and their allelic variants that affect the specified traits. Knowledge of these alleles and their effects will facilitate the development of efficient tree improvement programs through genome-guided breeding and genetic engineering and further our mechanistic understanding of trait variation. Improved mechanistic understanding of tree growth and development is needed to develop process models that will allow us to anticipate and manage change in forest ecosystems. Here we consider the development of an ideotype for loblolly pine (Pinus taeda L.) and discuss genomic approaches for studying the component traits that will enable advances in process model development and the genetic improvement of this important conifer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/treephys/28.7.1135 | DOI Listing |
Plant Divers
November 2024
School of Ecology and Environment, Xinjiang University, Wulumuqi, 830017, China.
As the core of leaf functional traits, the trade-off relationship between the petiole and lamina expresses the plant's adaptability to the environment in terms of support structure and photosynthesis. We investigated the proportions of allometric growth in the relationship between the petiole and the lamina of broadleaf woody plants in temperate highland Tianshan Mountains montane forests through three dimensions (length, area, and mass), including the length of the lamina (LL) and the length of the petiole (PL), and the area of the lamina (LA) and petiole cross sectional area (PCA) versus the mass of the lamina (LM) and the mass of the petiole (PM), as well as exploring the characteristics of the variance in response to seasonal changes. We found that the functional traits in all three dimensions showed a clear convergent evolution as the seasons progressed, that is, a "seasonal effect" of increasing and then decreasing.
View Article and Find Full Text PDFData Brief
February 2025
Estación Experimental de Aula Dei, EEAD - CSIC, Ave. Montañana 1005, 50059 Zaragoza, Spain.
The dataset [1] hosts pedological info and images of the lands -locally known as - of the outcropping gypsiferous core of the Barbastro-Balaguer anticline (Fig. 1). It stands out in the landscape for the linear reliefs due to outcrops of dipping strata with differential resistance to erosion, and also because of its whitish color (Fig.
View Article and Find Full Text PDFNurs Crit Care
January 2025
Department of Nursing, the First Affiliated Hospital of Guangxi Medical University, Nanning, China.
Background: Central venous catheters (CVCs) are placed where the vena cava meets the right atrium. Their common use raises the risk of catheter-related thrombosis (CRT), a potentially life-threatening complication.
Aim: This study leverages machine learning to develop a CRT predictive model for abdominal surgery patients, aiming to refine clinical decisions and elevate treatment quality.
Am J Bot
January 2025
National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, NSW, Australia.
Premise: Magnoliids are a strongly supported clade of angiosperms. Previous phylogenetic studies based primarily on analyses of a limited number of mostly plastid markers have led to the current classification of magnoliids into four orders and 18 families. However, uncertainty remains regarding the placement of several families.
View Article and Find Full Text PDFBiol Rev Camb Philos Soc
January 2025
Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, Oslo, 0316, Norway.
Boreal forests are important carbon sinks and host a diverse array of species that provide important ecosystem functions. Boreal forests have a long history of intensive forestry, in which even-aged management with clear-cutting has been the dominant harvesting practice for the past 50-80 years. As a second cycle of clear-cutting is emerging, there is an urgent need to examine the effects of repeated clear-cutting events on biodiversity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!