Preparation, characterization and luminescent properties of lanthanide complexes with a new aryl amide bridging ligand.

Spectrochim Acta A Mol Biomol Spectrosc

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, PR China.

Published: December 2008

A new aryl amide type bridging ligand 1,4-bis{[(2'-benzylaminoformyl)phenoxyl]ethoxyl}benzene (L) and its complexes with lanthanide ions (Ln=Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er) were synthesized and characterized by elemental analysis, infrared spectra and electronic spectra. At the same time, the luminescent properties of the Sm, Eu, Tb and Dy complexes in solid state and the Tb complex in solvents were also investigated. At room temperature, these four complexes exhibited characteristic luminescence emissions of the central metal ions under UV light excitation and could be significant in the field of supramolecular photonic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2008.03.013DOI Listing

Publication Analysis

Top Keywords

luminescent properties
8
aryl amide
8
bridging ligand
8
preparation characterization
4
characterization luminescent
4
properties lanthanide
4
complexes
4
lanthanide complexes
4
complexes aryl
4
amide bridging
4

Similar Publications

Quantum dot-polymer composites have the advantages of high luminescent quantum yield (PLQY), narrow emission half-peak full width (FWHM), and tunable emission spectra, and have broad application prospects in display and lighting fields. Research on quantum dots embedded in polymer films and plates has made great progress in both synthesis technology and optical properties. However, due to the shortcomings of quantum dots, such as cadmium selenide (CdSe), indium phosphide (InP), lead halide perovskite (LHP), poor water, oxygen, and light stability, and incapacity for large-scale synthesis, their practical application is still restricted.

View Article and Find Full Text PDF

The use of biomass feedstocks for producing high-value-added chemicals is gaining significant attention in the academic community. In this study, near-infrared carbon dots (NIR-CDs) with antimicrobial and bioimaging functions were prepared from branches and leaves using a novel green synthesis approach. The spectral properties of the synthesized NIR-CDs were characterized by ultraviolet-visible (UV-Vis) absorption and fluorescence spectroscopy.

View Article and Find Full Text PDF

Ratiometric lanthanide coordination polymers (Ln-CPs) are advanced materials that combine the unique optical properties of lanthanide ions (e.g., Eu, Tb, Ce) with the structural flexibility and tunability of coordination polymers.

View Article and Find Full Text PDF

We report a comprehensive investigation of the photophysical properties of Hoechst 33258 (HOE) embedded in polyvinyl alcohol (PVA) films. HOE displays a bright, highly polarized, blue fluorescence emission centered at 430 nm, indicating effective immobilization within the polymer matrix of PVA. Its fluorescence quantum yield is notably high (~0.

View Article and Find Full Text PDF

Annealing Study on Praseodymium-Doped Indium Zinc Oxide Thin-Film Transistors and Fabrication of Flexible Devices.

Micromachines (Basel)

December 2024

Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Sciences and Engineering, South China University of Technology, Guangzhou 510640, China.

The praseodymium-doped indium zinc oxide (PrIZO) thin-film transistor (TFT) is promising for applications in flat-panel displays, due to its high carrier mobility and stability. Nevertheless, there are few studies on the mechanism of annealing on PrIZO films and the fabrication of flexible devices. In this work, we first optimized the annealing-process parameters on the glass substrate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!