The production of inulinase employing agroindustrial residues as the substrate is a good alternative to reduce production costs and to minimize the environmental impact of disposing these residues in the environment. This study focused on the use of a phenomenological model and an artificial neural network (ANN) to simulate the inulinase production during the batch cultivation of the yeast Kluyveromyces marxianus NRRL Y-7571, employing a medium containing agroindustrial residues such as molasses, corn steep liquor and yeast extract. It was concluded that due to the complexity of the medium composition it was rather difficult to use a phenomenological model with sufficient accuracy. For this reason, an alternative and more cost-effective methodology based on ANN was adopted. The predictive capacity of the ANN was superior to that of the phenomenological model, indicating that the neural network approach could be used as an alternative in the predictive modeling of complex batch cultivations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00449-008-0225-5 | DOI Listing |
Heliyon
January 2025
Faculty of Engineering, Autonomous University of Queretaro, Santiago de Queretaro, Qro, 76010, Mexico.
The search for alternative material sources to conventional ones has had a significant impact on the construction sector today, driven by the implementation of sustainable development policies on a global scale. Alternative cementitious materials, such as agricultural industry by-products, have been introduced to ensure the efficient use of renewable natural resources while promoting a balance between the technical and economic aspects of infrastructure projects. This article provides an overview of research conducted on the use of pozzolans derived from agro-industrial by-products, such as rice husk ash (RHA), palm oil fuel ash (POFA), and sugarcane bagasse ash (SCBA), which have a high content of amorphous silica.
View Article and Find Full Text PDFHeliyon
December 2024
Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/A, 70126, Bari, Italy.
The excessive and/or improper use of plant protection products (PPPs) can generate alarming levels of residues in the environment, compromising both soil fertility and food safety. Various organic wastes released in large amounts by agro-industrial activity are currently studied and applied as bioadsorbents for water and soil decontamination. This study explored the capacity of untreated orange peel, olive stones and pistachio shells to adsorb the PPPs oxyfluorfen (OXY), metribuzin (MET) and imidacloprid (IMI), and the xenoestrogen bisphenol A (BPA) from water.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia.
The environmental impact of plastic waste is a growing global challenge, primarily due to non-biodegradable plastics from fossil resources that accumulate in ecosystems. Biodegradable polymers like polyhydroxyalkanoates (PHAs) offer a sustainable alternative. PHAs are microbial biopolymers produced by microorganisms using renewable substrates, including agro-industrial byproducts, making them eco-friendly and cost-effective.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Military Institute of Engineering-IME, Praça General Tibúrcio 80, Urca, Rio de Janeiro 22290-270, Brazil.
The Amazon Region (AR), with its vast biodiversity and rich natural resources, presents a unique opportunity for the development of sustainable polymer composites (PCs) reinforced with residues from both timber and agro-extractivism industries. This study explores the potential of Amazonian residues, such as sawdust, wood shavings, and agro-industrial by-products such as açaí seeds and Brazil nut shells, to enhance the mechanical, thermal, and environmental properties of polymer composites. By integrating these natural materials into polymer matrices, significant improvements in the composite performance were achieved, including increased tensile strength, thermal stability, and biodegradability.
View Article and Find Full Text PDFBioresour Technol
December 2024
Chemical Engineering Division, DBT-Center of Innovative and Applied Bioprocessing, Mohali, Punjab 140306 India. Electronic address:
Leveraging biofuel derived from biomass stands as a pivotal strategy in reducing CO emissions and mitigating the greenhouse effect. Biomass serves as a clean, renewable energy source, offering inherent benefits. However, despite its advantages, biomass encounters obstacles hindering its widespread industrial applications, including its relatively low calorific value, limited grindability, high water content, and susceptibility to corrosion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!