Systemic lupus erythematosus (SLE) is characterized by inflammatory and dysregulatory immune responses including overactive B cells, overproduction of proinflammatory cytokines, and T cell hyperactivity. PGE(2) modulates a variety of immune processes at sites of inflammation, including production of inflammatory cytokines. However, the role of PGE(2) in dysregulatory inflammatory and immune responses in lupus remains unclear. We investigated whether PGE(2) mediates production of inflammatory cytokines in pristane-induced lupus BALB/c mice. Our results showed that levels of serum and BAL PGE(2) and LPS-stimulated production of PGE(2) by peritoneal macrophages were remarkably increased in pristane-induced lupus mice compared to healthy controls. Exogenous PGE(2) enhanced production of IL-6, IL-10, and NO but decreased TNF-alpha by macrophages and augmented IFN-gamma, IL-6, and IL-10 by splenocytes from pristane-induced lupus mice compared to healthy controls. Exogenous PGE(2) also enhanced production of IFN-gamma, IL-6, and IL-10 by thymocytes from pristane-induced lupus mice. Indomethacin (Indo), a PGE(2) synthesis inhibitor, greatly inhibited LPS-induced production of IL-6 and IL-10 by macrophages from pristane-induced lupus mice, while enhanced TNF-alpha. Indo remarkably inhibited Con A-increased production of IFN-gamma, IL-6, and IL-10 by splenocytes and thymocytes from pristane-induced lupus mice. Therefore, our findings suggest that endogenous PGE(2) may mediate dysregulation of production of proinflammatory cytokines, such as IL-6, IL-10, and IFN-gamma, and NO in pristane-induced lupus mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12272-001-1185-6 | DOI Listing |
PLoS One
January 2025
Laboratório de Imunologia Celular (LIM-17), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
Int J Mol Sci
December 2024
Departamento de Biología Molecular y Genómica, Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico.
The BALB/c model of pristane-induced lupus (PIL) exhibits cognitive impairment features resembling neuropsychiatric lupus (NPLSE). Osteopontin (OPN) is associated with disease activity in SLE; however, its involvement in NPLSE is not yet entirely determined. Our study aims to elucidate the contribution of full-length OPN (OPN-FL) plasma expression, OPN N-half, and to cognitive impairment in the PIL mice model.
View Article and Find Full Text PDFFront Immunol
December 2024
Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.
Objectives: Diffuse alveolar hemorrhage (DAH) is a life-threatening complication of systemic lupus erythematosus and small vessel vasculitis. We previously showed that neutrophil extracellular traps (NETs) were associated with the pathogenesis of pristane-induced DAH and demonstrated that neutrophil NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome assembly participated in NET generation under sterile stimulation. We investigated whether NLRP3 inflammasome assembly in neutrophils may drive pulmonary NETosis in a mouse model of pristane-induced DAH.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
The gut mycobiota (fungal microbiota) plays a crucial role in the immune system, potentially impacting autoimmune diseases such as systemic lupus erythematosus (SLE). Despite growing interest, data on intestinal fungi in SLE remain limited. This study thereby investigated the human-mimicked (mice) gut mycobiome and quantitative gut mycobiome analyses using universal fungal internal transcribed spacer 2 (ITS2) DNA next generation sequencing and real-time PCR, tracking time-series dynamics from preclinical to established SLE conditions in two SLE-prone mouse models.
View Article and Find Full Text PDFStem Cells
November 2024
Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio.
Introduction: Mesenchymal stromal cells (MSCs) can modulate immune responses and suppress inflammation in autoimmune diseases. Although their safety has been established in clinical trials, the efficacy of MSCs is inconsistent due to variability in potency among different preparations and limited specificity in targeting mechanisms driving autoimmune diseases.
Methods: We utilized High-Dimensional Design of Experiments methodology to identify factor combinations that modulate gene expression by MSCs to mitigate inflammation.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!