We describe the design and performance of a liquid helium-cooled As:Si blocked-impurity-band photodetector system intended for spectrophotometry in the thermal infrared (2 to 30 mum) spectral region. The system has been characterized for spectral sensitivity, noise, thermal stability, and spatial uniformity, and optimized for use with a Fourier-transform infrared spectrophotometer source for absolute goniometric reflectance measurements. Its performance is evaluated and compared to more common detector systems used in this spectral region, including room-temperature pyroelectric and liquid-N(2)-cooled photoconductive devices.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.47.002430DOI Listing

Publication Analysis

Top Keywords

spectral region
8
sensitive spatially
4
spatially uniform
4
uniform photodetector
4
photodetector broadband
4
broadband infrared
4
infrared spectrophotometry
4
spectrophotometry describe
4
describe design
4
design performance
4

Similar Publications

Photocurrent Generation by Plant Light-Harvesting Complexes is Enhanced by Lipid-Linked Chromophores in a Self-Assembled Lipid Membrane.

J Phys Chem B

January 2025

Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.

The light-harvesting pigment-protein complex II (LHCII) from plants can be used as a component for biohybrid photovoltaic devices, acting as a photosensitizer to increase the photocurrent generated when devices are illuminated with sunlight. LHCII is effective at photon absorption in the red and blue regions of the visible spectrum, however, it has low absorption in the green region (550-650 nm). Previous studies have shown that synthetic chromophores can be used to fill this spectral gap and transfer additional energy to LHCII, but it was uncertain whether this would translate into an improved performance for photovoltaics.

View Article and Find Full Text PDF

Simultaneous Concentration and T Mapping of Brain Metabolites by Fast Multi-Echo Spectroscopic Imaging.

NMR Biomed

February 2025

MR Methodology, Department for Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland.

The purpose of this study was to produce metabolite-specific T and concentration maps in a clinically compatible time frame. A multi-TE 2D MR spectroscopic imaging (MRSI) experiment (multi-echo single-shot MRSI [MESS-MRSI]) deployed truncated and partially sampled multi-echo trains from single scans and was combined with simultaneous multiparametric model fitting. It was tested in vivo for the brain in five healthy subjects.

View Article and Find Full Text PDF

Driver fatigue recognition using limited amount of individual electroencephalogram.

Biomed Eng Lett

January 2025

Department of Biomedical Engineering, College of Health Science, Yonsei University, Wonju, Republic of Korea.

Unlabelled: This study aims to create a fatigue recognition system that utilizes electroencephalogram (EEG) signals to assess a driver's physiological and mental state, with the goal of minimizing the risk of road accidents by detecting driver fatigue regardless of physical cues or vehicle attributes. A fatigue state recognition system was developed using transfer learning applied to partial ensemble averaged EEG power spectral density (PSD). The study utilized layer-wise relevance propagation (LRP) analysis to identify critical cortical regions and frequency bands for effective fatigue discrimination.

View Article and Find Full Text PDF

We propose and demonstrate a data-driven plasmonic metascreen that efficiently absorbs incident light over a wide spectral range in an ultra-thin silicon film. By embedding a double-nanoring silver array within a 20 nm ultrathin amorphous silicon (a-Si) layer, we achieve a significant enhancement of light absorption. This enhancement arises from the interaction between the resonant cavity modes and localized plasmonic modes, requiring precise tuning of plasmon resonances to match the absorption region of the silicon active layer.

View Article and Find Full Text PDF

Prediction of the likelihood of conception to first or second insemination in Chinese Holstein cows using milk Fourier transformed infrared spectroscopy.

J Dairy Sci

January 2025

Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:

Accurate identification of cows' likelihood of conception during the period from recent calving to the first artificial insemination (AI) will provide assistance in managing the fertility of dairy cows and contribute to the economic prosperity and sustainability of the farm. The purpose of this study was to use FTIR spectroscopy collected from recent calving to the first artificial insemination (AI) to predict the cow's likelihood of conception to first AI, first or second AI. This study specifically focused on the role of FTIR spectral and farm data collected at different time windows in improving the accuracy of model for predicting the cow's likelihood of conception to first AI, first or second AI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!