A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mycobacterial interaction with innate receptors: TLRs, C-type lectins, and NLRs. | LitMetric

Mycobacterial interaction with innate receptors: TLRs, C-type lectins, and NLRs.

Curr Opin Infect Dis

Department of Microbiology, College of Medicine, Chungnam National University, Jungku, Daejeon, South Korea.

Published: June 2008

Purpose Of Review: The recent discovery of novel classes of receptors, including toll-like receptors and nucleotide-binding oligomerization domain (NOD)-like receptors is challenging the crucial role of the innate immune system in the recognition of Mycobacterium tuberculosis. The present review is to focus on the roles and mechanisms of specific pattern-recognition receptor-microbial interaction for the host defense against mycobacterial infections.

Recent Findings: Toll-like receptors, key players in innate immunity, are now known to be important for the initiation and coordination of host responses to Mycobacterium tuberculosis. The interaction of Mycobacterium tuberculosis with toll-like receptors triggers intracellular signaling cascades that culminate in a proinflammatory response, but can also trigger signals that dampen the innate immune response. Other membrane-bound pattern-recognition receptors, including the mannose receptor, DC-SIGN, and Dectin-1, contribute to the propagation of Mycobacterium tuberculosis inflammatory signals, and Nod-like receptors (cytosolic pattern-recognition receptors) also act in modulating host recognition of Mycobacterium tuberculosis. Interactions between toll-like receptors and other pattern-recognition receptors are also evident in responses to Mycobacterium tuberculosis, as are possible mechanisms for coordination of innate and adaptive immunity.

Summary: The complexity of Mycobacterium tuberculosis-pattern-recognition receptor interactions and their effects on host cell responses suggest key roles for innate immunity in controlling Mycobacterium tuberculosis, and the possibility of developing novel therapeutics for tuberculosis that target Mycobacterium tuberculosis-regulated innate immunity pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1097/QCO.0b013e3282f88b5dDOI Listing

Publication Analysis

Top Keywords

mycobacterium tuberculosis
28
toll-like receptors
16
innate immunity
12
pattern-recognition receptors
12
receptors
11
mycobacterium
9
receptors including
8
nod-like receptors
8
innate immune
8
recognition mycobacterium
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!