A discontinuous tonotopic organization in the inferior colliculus of the rat.

J Neurosci

Auditory Neurophysiology Unit, Laboratory for the Neurobiology of Hearing, Faculty of Medicine, University of Salamanca, 37007 Salamanca, Spain.

Published: April 2008

Audible frequencies of sound are encoded in a continuous manner along the length of the cochlea, and frequency is transmitted to the brain as a representation of place on the basilar membrane. The resulting tonotopic map has been assumed to be a continuous smooth progression from low to high frequency throughout the central auditory system. Here, physiological and anatomical data show that best frequency is represented in a discontinuous manner in the inferior colliculus, the major auditory structure of the midbrain. Multiunit maps demonstrate a distinct stepwise organization in the order of best frequency progression. Furthermore, independent data from single neurons show that best frequencies at octave intervals of approximately one-third are more prevalent than others. These data suggest that, in the inferior colliculus, there is a defined space of tissue devoted to a given frequency, and input within this frequency band may be pooled for higher-level processing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2440588PMC
http://dx.doi.org/10.1523/JNEUROSCI.0238-08.2008DOI Listing

Publication Analysis

Top Keywords

inferior colliculus
12
best frequency
8
frequency
6
discontinuous tonotopic
4
tonotopic organization
4
organization inferior
4
colliculus rat
4
rat audible
4
audible frequencies
4
frequencies sound
4

Similar Publications

Neuroimaging model of visceral manipulation in awake rat.

J Neurosci

January 2025

The Neuroscience Graduate Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, USA

Reciprocal neuronal connections exist between the internal organs of the body and the nervous system. These projections to and from the viscera play an essential role in maintaining and finetuning organ responses in order to sustain homeostasis and allostasis. Functional maps of brain regions participating in this bidirectional communication have been previously studied in awake humans and anesthetized rodents.

View Article and Find Full Text PDF

Role of the Dorsal Cortex of the Inferior Colliculus in the Precedence Effect.

Med Sci Monit

January 2025

Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.

BACKGROUND The precedence effect (PE) is a physiological phenomenon for accurate sound localization in a reverberant environment. Physiological studies of PE have mostly focused on the central nucleus of the inferior colliculus (CNIC), which receives ascending and descending projections, as well as projections from the shell of the inferior colliculus (IC) and contralateral IC. However, the role of the dorsal cortex of the IC (DCIC), which receives ascending and descending projections to ensure sound information processing and conduction on PE formation, remains unclear.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a progressive neurodegenerative disorder that is characterized by motor symptoms such as tremors, rigidity, and bradykinesia. Magnetic resonance imaging (MRI) offers a non-invasive means to study PD and its progression. This study utilized the unilateral 6-hydroxydopamine (6-OHDA) rat model of parkinsonism to assess whether white matter microstructural integrity measured using advanced free-water diffusion tensor imaging metrics (fw-DTI) and gray matter density using voxel-based morphometry (VBM) can serve as imaging biomarkers of pathological changes following nigrostriatal denervation.

View Article and Find Full Text PDF

Neural correlates of perceptual plasticity in the auditory midbrain and thalamus.

J Neurosci

January 2025

Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland, 20742.

Hearing is an active process in which listeners must detect and identify sounds, segregate and discriminate stimulus features, and extract their behavioral relevance. Adaptive changes in sound detection can emerge rapidly, during sudden shifts in acoustic or environmental context, or more slowly as a result of practice. Although we know that context- and learning-dependent changes in the sensitivity of auditory cortical (ACX) neurons support many aspects of perceptual plasticity, the contribution of subcortical auditory regions to this process is less understood.

View Article and Find Full Text PDF

Profile-analysis experiments measure the ability to discriminate complex sounds based on patterns, or profiles, in their amplitude spectra. Studies of profile analysis have focused on normal-hearing listeners and target frequencies near 1 kHz. To provide more insight into underlying mechanisms, we studied profile analysis over a large target frequency range (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!