Long single-stranded DNAs and RNAs possess considerable secondary structure under conditions that support stable hybrid formation with oligonucleotides. Consequently, different oligomeric probes can hybridize to the same target with efficiencies that vary by several orders of magnitude. The ability to enzymatically generate structure-free single-stranded copies of any nucleic acid without impairing Watson-Crick base pairing to short probes would eliminate this problem and significantly improve the performance of many oligonucleotide-based applications. Synthetic nucleic acids that exhibit these properties are defined as pseudo-complementary. Previously, we described a pseudo-complementary A-T couple consisting of 2-aminoadenine (nA) and 2-thiothymine (sT) bases. The nA-sT couple is a mismatch even though nA-T and A-sT are stable base pairs. Here we show that 7-alkyl-7-deazaguanine and N(4)-alkylcytosine (where alkyl = methyl or ethyl) can be used in conjunction with nA and sT to render DNA largely structure-free and pseudo-complementary. The deoxynucleoside triphosphates (dNTPs) of these bases are incorporated into DNA by selected mesophilic and thermophilic DNA polymerases and the resulting primer extension products hybridize with good specificity and stability to oligonucleotide probes composed of the standard bases. Further optimization and characterization of the synthesis and properties of pseudo-complementary DNA should lead to an ideal target for use with oligonucleotide probes that are <25 nt in length.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2425472PMC
http://dx.doi.org/10.1093/nar/gkn209DOI Listing

Publication Analysis

Top Keywords

oligonucleotide probes
8
dna
5
pseudo-complementary
5
enzymatic synthesis
4
synthesis structure-free
4
structure-free dna
4
dna pseudo-complementary
4
pseudo-complementary properties
4
properties long
4
long single-stranded
4

Similar Publications

The LutR protein represses the transcription of genes encoding enzymes for the utilization of l-lactate in through binding to a specific DNA region. In this study, we employed oligonucleotide probes modified by viscosity-sensitive tetramethylated thiophene-BODIPY fluorophores to investigate the impact of selected metabolites on the LutR-DNA complex. Our goal was to identify the effector molecule whose binding alters the protein-DNA affinity, thereby enabling gene transcription.

View Article and Find Full Text PDF

Single nucleotide variations (SNVs) and polymorphisms (SNPs) are characteristic biomarkers in various biological contexts, including pathogen drug resistances and human diseases. Tools that lower the implementation barrier of molecular SNV detection methods would provide greater leverage of the expanding SNP/SNV database. The oligonucleotide ligation assay (OLA) is a highly specific means for detection of known SNVs and is especially powerful when coupled with polymerase chain reaction (PCR).

View Article and Find Full Text PDF

The use of proteins as intracellular probes and therapeutic tools is often limited by poor intracellular delivery. One approach to enabling intracellular protein delivery is to transform proteins into spherical nucleic acid (proSNA) nanoconstructs, with surfaces chemically modified with a dense shell of radially oriented DNA that can engage with cell-surface receptors that facilitate endocytosis. However, proteins often have a limited number of available reactive surface residues for DNA conjugation such that the extent of DNA loading and cellular uptake is restricted.

View Article and Find Full Text PDF

A novel method for detecting genetic biomarkers in blood-based liquid biopsies using surface plasmon resonance imaging and magnetic beads shows promise in cancer diagnosis and monitoring.

Talanta

January 2025

Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95122, Catania, Italy; INBB, Istituto Nazionale di Biostrutture e Biosistemi, Viale delle Medaglie d'Oro, 305, 00136, Roma, Italy. Electronic address:

Directly detecting biomarkers in liquid biopsy for diagnosis and personalized treatment plays a crucial role in managing cancer relapse and increasing survival rates. Typically, the standard analysis of circulating tumour DNA requires lengthy isolation, extraction, and amplification steps, leading to sample contamination, longer turnaround time and higher assay costs. Surface plasmon resonance is an emerging and promising technology for rapid and real-time dynamic biomarker monitoring in liquid biopsy.

View Article and Find Full Text PDF

Globally, widespread tuberculosis is one of the acute problems of healthcare. Drug-resistant forms of tuberculosis require a personalized approach to treatment. Currently, rapid methods for detecting drug resistance of (MTB) to some antituberculosis drugs are often used and involve optical, electrochemical, or PCR-based assays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!