Excited-state relaxation in PbSe quantum dots.

J Chem Phys

National Renewable Energy Laboratory, Golden, Colorado 80401, USA.

Published: April 2008

In solids the phonon-assisted, nonradiative decay from high-energy electronic excited states to low-energy electronic excited states is picosecond fast. It was hoped that electron and hole relaxation could be slowed down in quantum dots, due to the unavailability of phonons energy matched to the large energy-level spacings ("phonon-bottleneck"). However, excited-state relaxation was observed to be rather fast (< or =1 ps) in InP, CdSe, and ZnO dots, and explained by an efficient Auger mechanism, whereby the excess energy of electrons is nonradiatively transferred to holes, which can then rapidly decay by phonon emission, by virtue of the densely spaced valence-band levels. The recent emergence of PbSe as a novel quantum-dot material has rekindled the hope for a slow down of excited-state relaxation because hole relaxation was deemed to be ineffective on account of the widely spaced hole levels. The assumption of sparse hole energy levels in PbSe was based on an effective-mass argument based on the light effective mass of the hole. Surprisingly, fast intraband relaxation times of 1-7 ps were observed in PbSe quantum dots and have been considered contradictory with the Auger cooling mechanism because of the assumed sparsity of the hole energy levels. Our pseudopotential calculations, however, do not support the scenario of sparse hole levels in PbSe: Because of the existence of three valence-band maxima in the bulk PbSe band structure, hole energy levels are densely spaced, in contradiction with simple effective-mass models. The remaining question is whether the Auger decay channel is sufficiently fast to account for the fast intraband relaxation. Using the atomistic pseudopotential wave functions of Pb(2046)Se(2117) and Pb(260)Se(249) quantum dots, we explicitly calculated the electron-hole Coulomb integrals and the P-->S electron Auger relaxation rate. We find that the Auger mechanism can explain the experimentally observed P-->S intraband decay time scale without the need to invoke any exotic relaxation mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2901022DOI Listing

Publication Analysis

Top Keywords

quantum dots
16
excited-state relaxation
12
hole energy
12
energy levels
12
pbse quantum
8
electronic excited
8
excited states
8
hole
8
relaxation
8
hole relaxation
8

Similar Publications

An agar hydrogel-CuNPs/N@CQDs dual-mode colorimetric/fluorescent indicator for non-destructive monitoring of banana ripening.

Food Chem

January 2025

Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran. Electronic address:

A colorimetric-fluorescence ripeness indicator, based on copper nanoparticles and carbon quantum dots doped with nitrogen (CuNPs/N@CQD) immobilized in agar hydrogel (AGH-CuNPs/N@CQDs) for ethylene gas detection, was developed for detecting the ripening of bananas. Ethylene could reduce the fluorescence intensity of CuNPs/N@CQDs and cause a red shift of the LSPR peak. The prepared AGH-CuNPs/N@CQDs indicator had an irreversible response to ethylene with LOD and LOQ of 9.

View Article and Find Full Text PDF

Exogenous Coreactant-Free Electrocatalytic Reactive Oxygen Species-Driven Dual-Signal Molecularly Imprinted Electrochemiluminescence Sensor for the Detection of Trenbolone.

Anal Chem

January 2025

The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.

Conventional dual-signal electrochemiluminescence (ECL) sensors feature high sensitivity and reliability, but the involvement of coreactants inevitably results in a complex configuration and shows reproducibility risk. Here, we propose an exogenous coreactant-free dual-signal platform, comprising luminol (anodic luminophore), CdSe quantum dots (cathodic luminophore), and CoO/TiC electrocatalyst (coreaction promoter). At different redox potentials, CoO/TiC induces water oxidation and oxygen reduction to produce OH and O radicals, which subsequently drive cathodic and anodic ECL emission, respectively.

View Article and Find Full Text PDF

Fluorescent nitrogen-doped carbon dots (N-GQDs) with long-wavelength emission properties are of increased interest for technological applications. They are widely synthesized through the solvothermal treatment of graphene oxide (GO) using ,-dimethylformamide (DMF) as a cleaving and doping agent. However, this process simultaneously generates undesired interfering blue-emissive by-products.

View Article and Find Full Text PDF

Colloidal quantum dots (QDs) are promising emitters for biological applications because of their excellent fluorescence, convenient surface modification, and photostability. However, the toxic cadmium composition in the state-of-the-art QDs and their inferior properties in the aqueous phase greatly restrict further use. The performance of water-soluble indium phosphide (InP) QDs lags far behind those of Cd-containing counterparts due to the lack of effective surface protection.

View Article and Find Full Text PDF

Facile preparation of iridium-based AIE polymer dots for sensitive electrochemiluminescence immunoassay of CD44 protein.

Anal Chim Acta

March 2025

Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea. Electronic address:

The development of aggregation-induced emission (AIE) luminophores is a fascinating and promising topic in electrochemiluminescence (ECL) bioanalysis. Herein, the AIE-active but water-insoluble [Ir(bt)₂(acac)] (bt = 2-phenylbenzothiazole, acac = acetylacetonate) was encapsulated within poly(styrene-maleic anhydride) (PSMA) using a simple nanoprecipitation method. This encapsulation strategy could effectively limit the free motion of Ir(bt)₂(acac) and trigger the aggregation-induced electrochemiluminescence (AIECL) effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!