The effect of a recent vegetation change (<100 years) from C(4) grassland to C(3) woodland in central Queensland, Australia, on soil organic matter (SOM) composition and SOM dynamics has been investigated using a novel coupled thermogravimetry-differential scanning calorimetry-quadrupole.mass spectrometry-isotope ratio mass spectrometry (TG-DSC-QMS-IRMS) system. TG-DSC-QMS-IRMS distinguishes the C isotope composition of discrete SOM pools, showing changes in labile, recalcitrant and refractory carbon in the bulk soil and particle size fractions which track the vegetation changes. Analysis of evolved gases (by QMS) from thermal decomposition, rather than observed weight loss, proved essential in determining the temperature at which SOM decomposes, because smectite and kaolinite clays contribute to observed weight losses. The delta(13)C analyses of the CO(2) evolved at different temperatures for bulk soil and particle size-separates showed that most of the labile SOM under the more recent woody vegetation was C(3)-derived carbon whereas the delta(13)C values in the recalcitrant SOM showed greater C(4) contributions. This indicated a shift from grass (C(4))- to tree (C(3))-derived carbon in the woodland, which was also supported by the two-phase (13)C enrichment with depth, i.e. C(3) vegetation dominated the top soil (0-10 cm), but the C(4) contribution increased with depth (more gradual). This is perturbed by the inclusion of charcoal from forest fires ((14)C age incursions) and by the deep incorporation of C(3) carbon due to root penetration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/rcm.3538 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!