Viral and non-viral vectors have been developed for gene therapy, but their use is associated with unresolved problems of efficacy and safety. Efficient and safe methods of DNA delivery need to be found for medical application. Here we report a new monopolar system of non-viral electro-gene transfer into the thymus in vivo that consists of the local application of electrical pulses after the introduction of the DNA. We assessed the proof of concept of this approach by correcting ZAP-70 deficient severe combined immunodeficiency (SCID) in mice. The thymic electro-gene transfer of the pCMV-ZAP-70-IRES-EGFP vector in these mice resulted in rapid T cell differentiation in the thymus with mature lymphocytes detected by three weeks in secondary lymphoid organs. Moreover, this system resulted in the generation of long-term functional T lymphocytes. Peripheral reconstituted T cells displayed a diversified T cell receptor (TCR) repertoire, and were responsive to alloantigens in vivo. This process applied to the thymus could represent a simplified and effective alternative for gene therapy of T cell immunodeficiencies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2323614PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0002059PLOS

Publication Analysis

Top Keywords

gene therapy
8
electro-gene transfer
8
zap-70 restoration
4
restoration mice
4
mice vivo
4
vivo thymic
4
thymic electroporation
4
electroporation viral
4
viral non-viral
4
non-viral vectors
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!