Dietary bisphenol A (BPA) was evaluated in a mouse two-generation study at 0, 0.018, 0.18, 1.8, 30, 300, or 3500 ppm (0, 0.003, 0.03, 0.3, 5, 50, or 600 mg BPA/kg/day, 28 per sex per group). A concurrent positive control group of dietary 17beta-estradiol (0.5 ppm; 28 per sex) confirmed the sensitivity of CD-1 mice to an endogenous estrogen. There were no BPA-related effects on adult mating, fertility or gestational indices, ovarian primordial follicle counts, estrous cyclicity, precoital interval, offspring sex ratios or postnatal survival, sperm parameters or reproductive organ weights or histopathology (including the testes and prostate). Adult systemic effects: at 300 ppm, only centrilobular hepatocyte hypertrophy; at 3500 ppm, reduced body weight, increased kidney and liver weights, centrilobular hepatocyte hypertrophy, and renal nephropathy in males. At 3500 ppm, BPA also reduced F1/F2 weanling body weight, reduced weanling spleen and testes weights (with seminiferous tubule hypoplasia), slightly delayed preputial separation (PPS), and apparently increased the incidence of treatment-related, undescended testes only in weanlings, which did not result in adverse effects on adult reproductive structures or functions; this last finding is considered a developmental delay in the normal process of testes descent. It is likely that these transient effects were secondary to (and caused by) systemic toxicity. Gestational length was increased by 0.3 days in F1/F2 generations; the toxicological significance, if any, of this marginal difference is unknown. At lower doses (0.018-30 ppm), there were no treatment-related effects and no evidence of nonmonotonic dose-response curves for any parameter. The systemic no observable effect level (NOEL) was 30 ppm BPA (approximately 5 mg/kg/day); the reproductive/developmental NOEL was 300 ppm (approximately 50 mg/kg/day). Therefore, BPA is not considered a selective reproductive or developmental toxicant in mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/toxsci/kfn084 | DOI Listing |
Anim Microbiome
December 2024
Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway.
Background: Antibiotic use has undesirable side-effects on the host, including perturbations of gut microbiota, immunity, and health. Mammalian studies have demonstrated that concomitant/post antibiotic use of pro-, pre-, and synbiotics could re-establish gut microbiota and prevent detrimental host effects. However, studies evaluating similar effects in fish are scanty.
View Article and Find Full Text PDFJ Biosci Bioeng
January 2025
Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan; Agricultural Technology and Innovation Research Institute, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan. Electronic address:
Non-conventional yeasts are increasingly being used in the production of fermented beverages owing to their ability to create unique and high-quality products. The yeast Lachancea thermotolerans is of great industrial significance, particularly in the production of l(+)-lactic acid, which is beneficial for acidifying wine, beer, and potentially sake. To explore its potential in sake brewing, three L.
View Article and Find Full Text PDFPolymers (Basel)
September 2024
Department of Water-Atmosphere-Environment, Institute of Waste Management and Circularity, BOKU University, Muthgasse 107, 1190 Vienna, Austria.
Engineering plastics, such as polyoxymethylene (POM), are high-performance thermoplastics designed to withstand high temperature or mechanical stress and are used in electronic equipment, the automotive industry, construction, or specific household utensils. POM is immiscible with other plastics but due to a low volume of production, no methods were developed to separate it from the residual plastic waste stream. Therefore, POM recycling is minimal despite its high market value.
View Article and Find Full Text PDFMicroorganisms
September 2024
China Special Equipment Inspection and Research Institute, Beijing 100029, China.
Objective Sulfate-reducing bacteria (SRB) pose a threat to the safe operation of shale-gas-gathering pipelines. Therefore, it is essential to explore the role played by SRB in dedicated pipelines. Methods In this work, the corrosion behavior of SRB was investigated by organic carbon starvation immersion experiments combined with cell number monitoring, corrosion weight loss recordings, morphology and profile observations and electrochemical measurements.
View Article and Find Full Text PDFMaterials (Basel)
July 2024
Department of Electrical Engineering, Kun Shan University, No.195, Kunda Rd., Yongkang Dist., Tainan City 710303, Taiwan.
This research introduces a hydrogen sensor made from a thin film of magnesium zinc oxide (MgZnO) deposited using a technique called radiofrequency co-sputtering (RF co-sputtering). Separate magnesium oxide (MgO) and zinc oxide (ZnO) targets were used to deposit the MgZnO film, experimenting with different deposition times and power levels. The sensor performed best (reaching a sensing response of 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!